

pH 2 3 4 5 6 7 8 9 10 11 Allophane (dispersed at both acidic and alkaline pH)

Unit: Ångstrom

• $1 \text{ Å} = 10^{-10} \text{ m} = 10^{-1} \text{ nm} = 10^{-4} \text{ }\mu\text{m}$

• Size of allophane particle: 35 - 50 Å is 3.5-5.0 / 1000 of 1 µm. = 3.5 - 5.0 nm

Functions of allophane

- Source of negative and positive charges.
- Adsorption of cations and anions.
- Fixation of phosphate.
- Absorption of moisture.
- Contribution to good physical property of soil.

Allophane and Imogolite Prof. Yoshinaga, Ehime Univ., Japan

Prof. Yoshinaga, Ehime Univ., Japan

Structural model of Imogolite (Cracdwick et al. 1972)

Imogolite

Form

- Tubular alumino-silicate Outer diameter: 2.5 nm, Inner diameter: 1.0 nm Length: Tens ~ thousands nm Chemical composition
 - $SiO_2 \cdot Al_2O_3 \cdot 2H_2O$

Origin

Volcanic glass, amorphous hydrated-oxides

Characteristics of 1:1 type clay minerals

Clay minerals	Form of particles	Specific surface area (m²/g)	CEC (cmol kg ⁻¹)
Kaolinite	Plate, thin plate	10 - 55	2 - 10
Halloysite (10 Å)	Hollow tubular, spherical	60 - 1100	5 - 40
Halloysite (7 Å)	Hollow tubular	60 - 1100	5 - 15

Characteristics of 2:1 and 2:1:1 type clay minerals

Clay minerals	Form of particles	Specific surface area (m²/g)	CEC (cmol kg ⁻¹)
2:1 type			
Smectite	Thin film	770	60 - 100
Vermiculite	Plate, thin plate	770	100 - 150
Illite	Plate, thin plate	10 - 55	10 - 15
2:1:1 type			
Chlorite	Plate, thin plate	10 - 55	2 - 10

Characteristics of quasicrystal and amorphous clay minerals

Clay minerals	Form of particles	Specific surface area (m ² /g)	CEC (cmol kg ⁻¹)
quasicrystal			
Imogolite	Hollow tubular	1025	20 - 30
amorphous			
Allophane	Hollow spherical	1050	30 - 135

Negative charges in soil

1) Isomorphic substitution in 2:1 type clay minerals

2) Broken bond SiO⁻ charges of 1:1 clay minerals and allophane⁻

3) Acidic functional groups of humic substances: COO⁻, phenolic O⁻

Permanent negative charge

Isomorphic substitution in2:1 type clay minerals.Does not change with pH.Behaves as strong acid.

pH dependent negative charge

1) Broken bond SiO⁻ in 1:1 clay minerals and allophane.

2) Acidic functional groups of humic substances: COO⁻, phenolic O⁻

Decreases with the decrease in pH.

Behaves as weak acid. Has pH buffering action.

Function of negative charges in soil.

Holding the cations NH₄⁺, Ca²⁺, Mg²⁺, K⁺, Na⁺, etc.

Cation Exchange Capacity (CEC)

Positive charges in soil.

1) AlOH⁺ in the surface of allophane and broken bond charge.

2) Nitrogen functional groups of humic substances.

R- NH_3^+ , R- $N^+ H_2CH_3$, etc.

Increases with the decrease in pH.

Function of positive charges in soil.

Holding NO_3^- , SO_4^{2-} , PO_4^{3-} , Organic anions, and humic substances.

Positive and negative charges in soil

 $NO_3^ H_2PO_4^ HPO_4^{--}$ SO_4^{--} $Cl^ R-CO_2^-$

Clay and humic substances load large amount of variable charges which attract ions in soil.

Simplified model of the structure of humic substances

– several million

Characteristics of organic colloids in soil (1)

- Many charges per unit weight. ---- Becomes the dominant charge.
- Dissociation of carboxyl group. ---- Negative charge.
- Protonation of amino group. ---- Positive charge.

Characteristics of organic colloids in soil (2)

- Variable charge depending on pH.
- Keep negative charge even at low pH due to low isoelectric point.
- Easily decomposed and lost.
- Can be increased by organic matter application.