Chemical properties of soils

Kiyoshi Tsutsuki http://timetraveler.html.xdomain.jp

Why do we have to know the chemical properties of soils?

- History of soil itself.
- Holding and supply of nutrients.
- Acidification, alkalization, salinization of soils.
- Soil pollution (organic, heavy metal pollutions)
- Soil improving methods.

Understanding the soil chemical properties is necessary for the above matter.

Soil mineral components

Their change with soil formation

Igneous rocks Plutonic rocks

Granites

Diorite

Gabbro

Volcanic rocks

Rhyolite

Dacite

Andesite

Basalt

Rock forming minerals

Quarts

Orthoclase

Microcline

Plagioclase

White mica

Pyroxene

Biotite

Olivine

Amphibole

Process of soil formation

Accumulation of soil orga matter

Formation of clay minerals

Formed through the reaction of rock and water near the surface of earth crust.

- Diagenesis (deep underground, at high temperature and high pressure)
- Hydrothermal activity (Reaction with water at high temperature)
- Weathering (at normal temperature and pressure)

Surface area of soil particles and clay

	Maximum radius	Surface area (when packed in 1 m ³)
Gravel	10 mm	157 m ²
Coarse sand	1 mm	1570 m ²
Fine sand	0.1 mm	1.57 ha
Silt	0.01 mm	15.7 ha
Clay	0.001 mm	1.57 km ²
Kaolinite	$0.05-0.5\ \mu m$	75 km ²
Montmorillonite	$0.1-0.25~\mu m$	1051 km ²
Allophane	< 0.0025 µm	1433 km ²

Specific surface area of soil particles and clay

	Maximum radius	Specific surface area (m²/g)	CEC (cmol kg ⁻¹)
Gravel	10 mm	1.15 x 10 ⁻⁴	
Coarse sand	1 mm	11.5 x 10 ⁻⁴	
Fine sand	0.1 mm	115 x 10 ⁻⁴	
Silt	0.01 mm	0.115	
Clay	0.001 mm	1.15	
Kaolinite	$0.05-0.5\;\mu m$	55	2 - 10
Montmorill onite	0.1 – 0.25 μm	770	60 - 100
Allophane	< 0.0025 µm	1050	30 - 135

Colloid

Particles with diameter of $10^{-7} - 10^{-9}$ m dispersed in air, liquid and solid, and their dispersed state. Molecular colloid is composed of macro molecules. Particle colloid is composed of solid or liquid fine particles. Micelle colloid is composed of many associated molecules.

0.1~0.001 μm, 100~ 1 nm, 1000~ 10 Å

Soil colloids

- Clay minerals
- Humic substances

Both are indigenous substances on the surface of earth.

Adsorb cations, anions and organic matter.

Indispensable for the soil environment suitable for life activity.

Si-O 1.62Å

Si tetraneuron SiO₂: 50 - 60 % in rocks

Al-O 1.75 Å

Ion radius

Al³⁺ 0.51Å O²⁻ 1.26Å

Al octahedron Al₂O₃: 15 – 20 % in rocks

Al octahedral layer

ΑΙ

Cross section of Al:Si 1:1 lattice

Al octahedral layer

Si Al

Si tetrahedral layer

Oxygen atoms

Structure of 1:1 type clay minerals

Cause of negative charge in kaolinite

SiO⁻ on the cleaved surface of crystals.

Kaolinite

Structure of montmorillonite

isomorphic substitution

2:1 type clay minerals (Illite, Vermiculite)

Isomorphic substitution in the Si tetrahedral layer.

Isomorphic substitution in the Si tetrahedral layer.

Structure of illite (mica type clay minerals)

Adsorption of Cs⁺ at the frayed edge

- Wedge like site in the loosened part of the stacked layers of vermiculite is called "frayed edge".
- Hydrated cations can not enter this site.
- Unhydrated Cs+ ion just fit this opening (niche).
- Dr. Nakao Atsushi http://www.kpu.ac.jp/cmsfiles/contents/000002/28 73/nakao.pdf