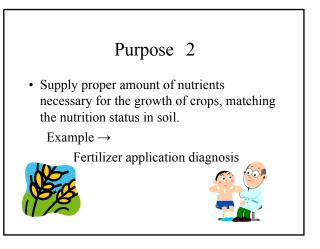


IMPORTANCE OF SOIL DIAGNOSIS IN AGRICULTURE

Purpose 1


Find out the soil-related factor inhibiting the growth of crops, and improve it.
 Example →

Example \rightarrow

Correct soil acidity Correct phosphate deficiency

Improve drainage

Purpose 3

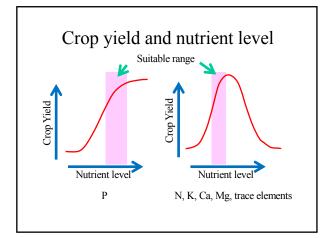
Contribution to clean agriculture ← Excess fertilization pollute the environment

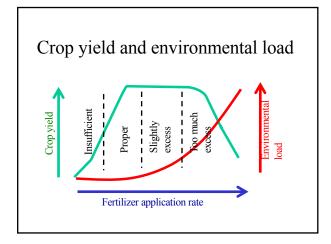
Nutrient absorption by plants

Nutrient holding capacity of soil Present nutrient content in soil

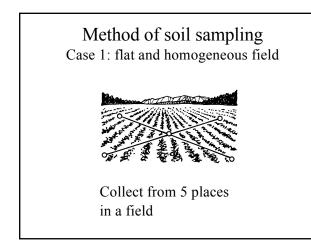
should be known.

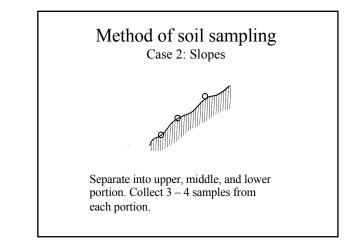
Disorder in crop growth caused by nutrition status of soil

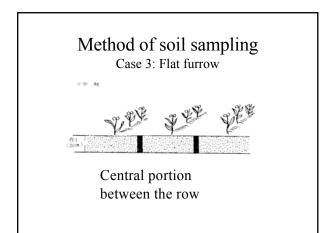

- Scab disease of potato (too high soil pH)
- Infertility of rice Softning
 (excess nitrogen, silicate deficiency)
- Bolting phenomena of vegetables (excess phosphate)

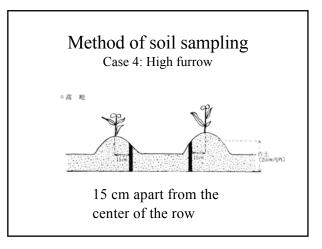


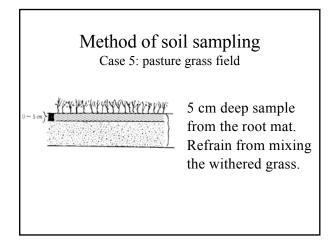
Disorder in crop growth caused by nutrition status of soil (2)

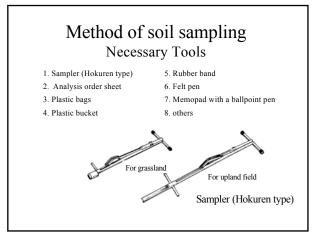

- Calcium deficiency of vegetables (Imbalance in basic cations)
- Decrease in quality of vegetables Lowering in sugar and vitamins (accumulation of nitrate)

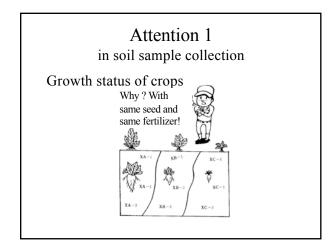


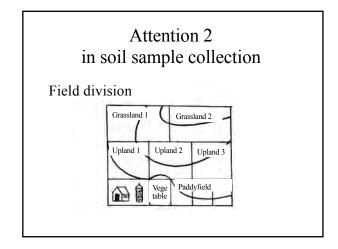


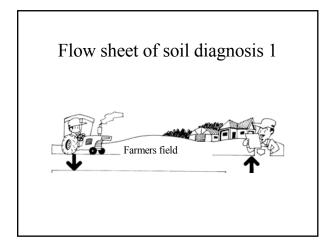


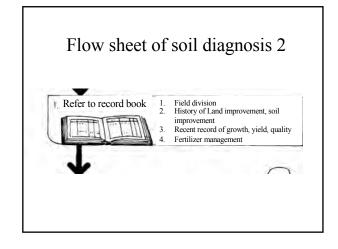


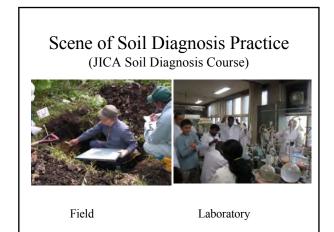


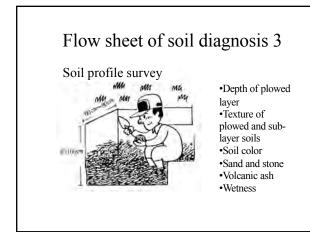


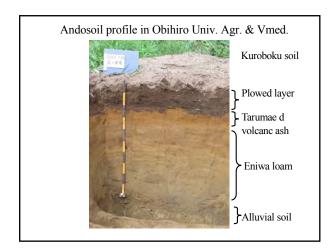


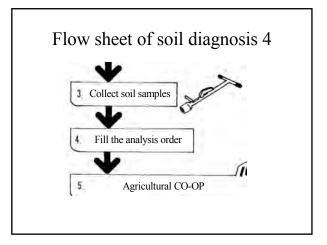


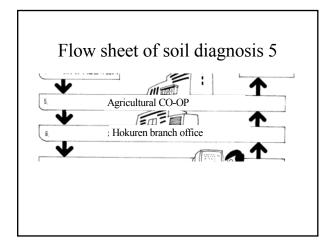


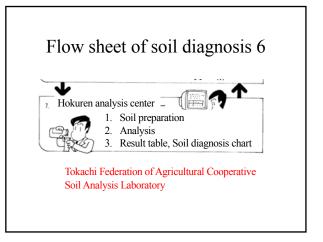


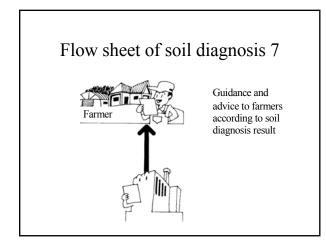


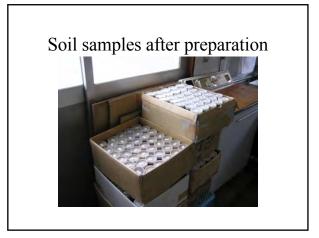







What soil profile survey tells you:


- What factor is limiting the plant growth (gravel, volcanic ash, clay, compaction of soil material, acidity, salt accumulation)
- Content and thickness of humus
- Drainage, water retention, dry or wet.
- Different soil layers composing the soil profile → History of soil



Various Analysis Items and their significance

pH(H₂O)

- Concentration of free form H⁺ in soil solution
- $pH = log(H^+)$
- Add 25 ml of water to 10g of soil.
- Shake 30 minutes.
- Measure the pH of turbid suspension using pH meter.

Factors affecting soil pH(H₂O)

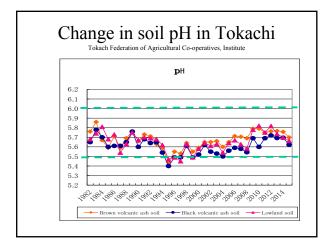
- Fertilizer application
- Nutrient absorption by crops
- Seasonal change in climate, precipitation
- Partial pressure of CO2
- Activity of soil microbes
- Decomposition of soil organic matter
- Saturation degree of soil bases
- Leaching of soil bases
- Nitrification (NH₄⁺, NO₃⁻)

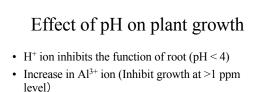
pH meter & EC meter

pH(KCl)

- Reflect the concentration of H⁺ and Al³⁺ adsorbed electrostatically to clay and humus.
- pH(KCl) decreases when degree of saturation by basic cations is low.
- Add 25 ml of 1 M KCl to 10g of soil.
- Shake 30 minutes.
- Measure the pH of turbid suspension using pH meter.

Meaning of soil pH(KCl)


- Highly correlated with Al saturation degree of soil.
- pH(KCl) lower than 5.2 means
 - \rightarrow occurrence of exchangeable Al³⁺
 - \rightarrow Inhibition of plant growth by Al³⁺
- $Al^{3+} + H_2O \rightarrow Al(OH)^{2+} + H^+$
- $Al(OH)^{2+} + H_2O \rightarrow Al(OH)_2^+ + H^+$


pH(0.01M CaCl₂)

- Masking the effect of seasonal change and farm management
- To reflect the actual root zone environment more accurately, soil pH under dilute electrolyte concentration is more appropriate.

Meaning of soil pH

< 5.0	Very acidic
5.0 - 5.5	Acidic
5.5 - 6.0	Weakly acidic
6.0 - 6.5	Slightly acidic
6.5 - 7.0	Neutral
7.0-7.5	Slightly alkaline
7.5 - 8.0	Weakly alkaline
8.0 - 8.5	Alkaline
8.5 <	Very alkaline

- Inhibit absorption of N, P, K, Ca, Mg, B, Mo and symptom of deficiency (in acidic range)
- Excess in Cu, Zn, Mn, Fe (in acidic range)
- Deficiency in Cu, Zn, Mn, Fe (in alkaline range)

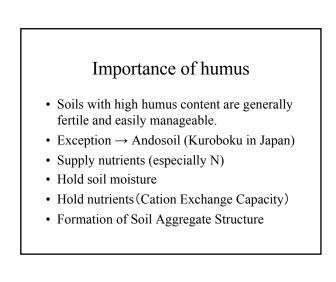
Exchangeable Acidity

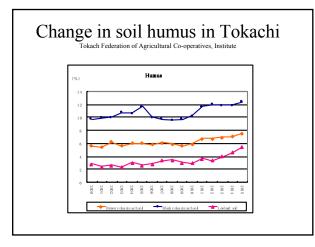
- Weigh 10 g of air dried soil in to a flask or bottle.
- Add 25 mL of 1N KCl.
- Shake for 1 hour.
- Filter through a filter paper (Advantec No.6).
- Take 10 mL of the filtrate into a flask and titrate with 0.1 N NaOH.
- Consumed mL is multiplied by 12.5.
- Obtained value is Y₁.

Electric conductivity (EC)

- Reflect total concentration of water soluble ions in soil solution
- Add 50 ml of deionized water to 10g of soil, shake 30 min. Measure EC of turbid suspension using EC meter.
- Unit is S/m, mS/cm or µS/cm, S: Siemens (1S/m=10 mS/cm = 10⁴ µS/cm)

Meaning of soil EC


- High correlation with nitrate NO_3^- content
- Malnutrition under low EC(< 0.1 mS cm⁻¹)
- Growth damage at high EC (> 1 mS cm⁻¹)
- Adjust fertilizer application rate according to EC


	Greenhouse soil diagnosis according							
	to pH and EC							
	7.0	Excess Ca \rightarrow Apply sulfate fertilizer		Excess fertilizer → No fertilizer, Remove salts by flooding				
pH(H ₂ O)			Suitable					
	5.5 Insufficient ferti Apply fertilizer a organic matter		Excess N fertil zer \rightarrow Frequent Watering, Remove salts by flooding					
	0.4 1.0							
	EC (mS/cm)							

Application rate of basal fertilizer (N, K) according to soil EC (dS m ⁻¹) in upland field							
Soil Type	< 0.3	0.4-0.7	0.8-1.2	1.3-1.5	1.6 <		
Humic andosoil	Standard rate	2/3	1/2	1/3	No fertilizer		
Sandy• Fine textured	Standard rate	2/3	1/3	No fertilizer	No fertilizer		
Sand dune/ immature	Standard rate	1/2	1/4	No fertilizer	No fertilizer		

Humus
• Humus = Soil organic matter
Method of determination
Rapid estimation by soil color
 Tyurin method (Potassium dichromate oxidation/ Titration)
• Dry combustion method (Instrumental analysis)

• Nitrogen is the most important constituent of fertilizer.

Inorganic nitrogen

- Ammonium nitrogen
 Extracted by 1N KCl, 2N KCl
- Nitrate nitrogen
 Extracted by Water, 1N KCl, 2N KCl
- Determine by steam distillation/ titration or colorimetry
- Rapidly available to crops

Available nitrogen

- Potential amount of inorganic nitrogen formation
- After incubating 4 weeks at 30 °C, total amount of formed inorganic nitrogen is determined.
- Incubation under upland or paddy condition.
- Problem: Time consuming method