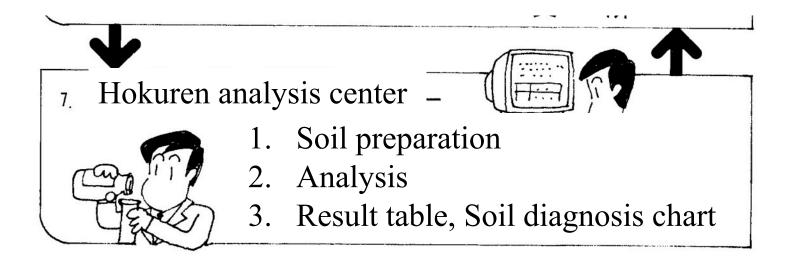
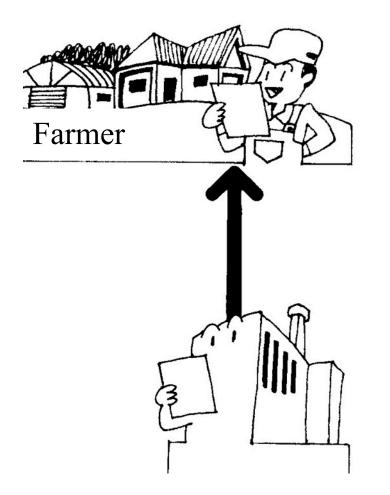

What soil profile survey tells you:


- What factor is limiting the plant growth (gravel, volcanic ash, clay, compaction of soil material, acidity, salt accumulation)
- Content and thickness of humus
- Drainage, water retention, dry or wet.
- Different soil layers composing the soil profile → History of soil

Andosoil profile in Obihiro Univ. Agr. & Vmed.



Tokachi Federation of Agricultural Cooperative Soil Analysis Laboratory

Guidance and advice to farmers according to soil diagnosis result

Drying soil samples

Sieve soil samples (2mm)

Soil samples after preparation

Various Analysis Items and their significance

$pH(H_2O)$

- Concentration of free form H⁺ in soil solution
- $pH = log (H^+)$
- Add 25 ml of water to 10g of soil.
- Shake 30 minutes.
- Measure the pH of turbid suspension using pH meter.

Factors affecting soil pH(H₂O)

- Fertilizer application
- Nutrient absorption by crops
- Seasonal change in climate, precipitation
- Partial pressure of CO2
- Activity of soil microbes
- Decomposition of soil organic matter
- Saturation degree of soil bases
- Leaching of soil bases
- Nitrification (NH_4^+, NO_3^-)

pH meter & EC meter

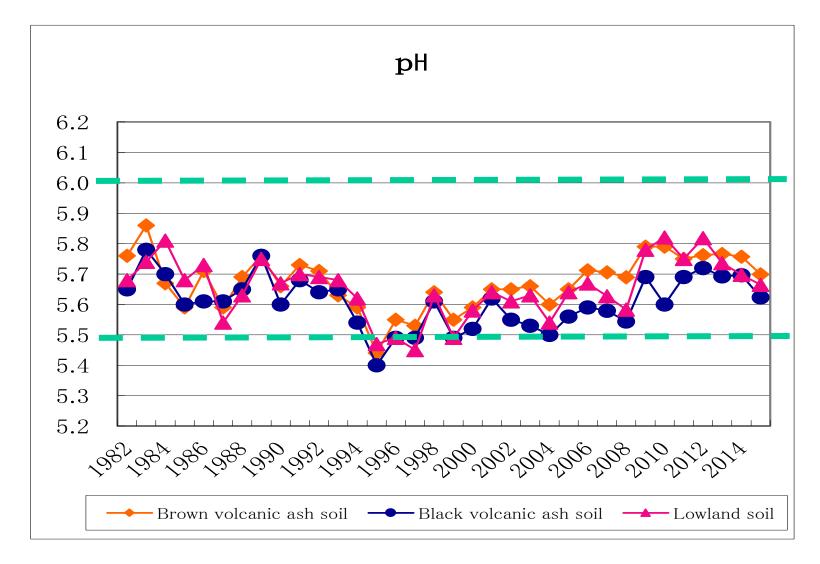
pH(KCl)

- Reflect the concentration of H⁺ and Al³⁺ adsorbed electrostatically to clay and humus.
- pH(KCl) decreases when degree of saturation by basic cations is low.
- Add 25 ml of 1 M KCl to 10g of soil.
- Shake 30 minutes.
- Measure the pH of turbid suspension using pH meter.

Meaning of soil pH(KCl)

- Highly correlated with Al saturation degree of soil.
- pH(KCl) lower than 5.2 means
 - \rightarrow occurrence of exchangeable Al³⁺
 - \rightarrow Inhibition of plant growth by Al³⁺
- $Al^{3+} + H_2O \rightarrow Al(OH)^{2+} + H^+$
- $Al(OH)^{2+} + H_2O \rightarrow Al(OH)_2^+ + H^+$

$pH(0.01M CaCl_2)$


- Masking the effect of seasonal change and farm management
- To reflect the actual root zone environment more accurately, soil pH under dilute electrolyte concentration is more appropriate.

Meaning of soil pH

< 5.0	Very acidic
5.0 - 5.5	Acidic
5.5 - 6.0	Weakly acidic
6.0 - 6.5	Slightly acidic
6.5 - 7.0	Neutral
7.0 - 7.5	Slightly alkaline
7.5 - 8.0	Weakly alkaline
8.0 - 8.5	Alkaline
8.5 <	Very alkaline

Change in soil pH in Tokachi

Tokach Federation of Agricultural Co-operatives, Institute

Effect of pH on plant growth

- H^+ ion inhibits the function of root (pH < 4)
- Increase in Al³⁺ ion (Inhibit growth at >1 ppm level)
- Inhibit absorption of N, P, K, Ca, Mg, B, Mo and symptom of deficiency (in acidic range)
- Excess in Cu, Zn, Mn, Fe (in acidic range)
- Deficiency in Cu, Zn, Mn, Fe (in alkaline range)

Exchangeable Acidity

- Weigh 10 g of air dried soil in to a flask or bottle.
- Add 25 mL of 1N KCl.
- Shake for 1 hour.
- Filter through a filter paper (Advantec No.6).
- Take 10 mL of the filtrate into a flask and titrate with 0.1 N NaOH.
- Consumed mL is multiplied by 12.5.
- Obtained value is Y₁.

Electric conductivity (EC)

- Reflect total concentration of water soluble ions in soil solution
- Add 50 ml of deionized water to 10g of soil, shake 30 min. Measure EC of turbid suspension using EC meter.
- Unit is S/m, mS/cm or μ S/cm, S: Siemens (1S/m=10 mS/cm = 10⁴ μ S/cm)

Meaning of soil EC

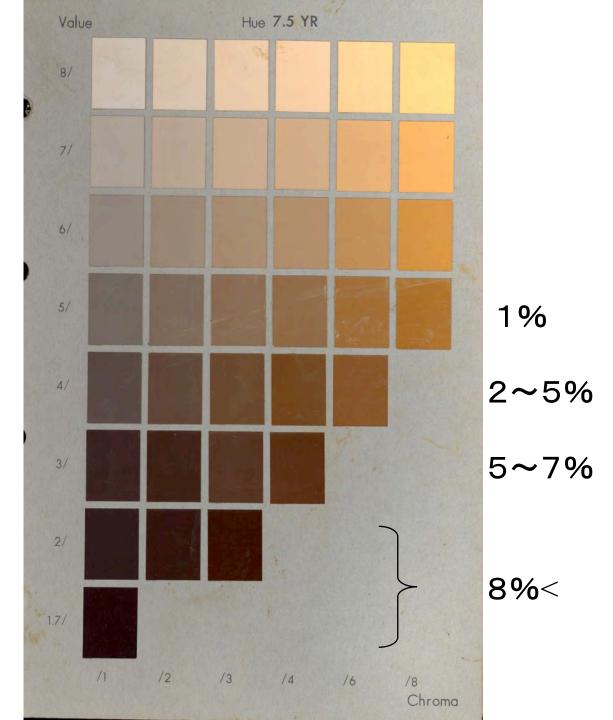
- High correlation with nitrate NO_3^- content
- Malnutrition under low EC(< 0.1 mS cm⁻¹)
- Growth damage at high EC (> 1 mS cm⁻¹)
- Adjust fertilizer application rate according to EC

Greenhouse soil diagnosis according to pH and EC

pH(H ₂ O)	7.0	Excess Ca → Apply sulfate fertilizer		Excess fertilizer → No fertilizer, Remove salts by flooding	
			Suitable		
	5.5	Insufficient fertil Apply fertilizer a organic matter		Excess N fertilizer → Frequent Watering, Remove salts by flooding	
0.4 1.0					

EC (mS/cm)

Application rate of basal fertilizer (N, K) according to soil EC(dS m⁻¹) in upland field

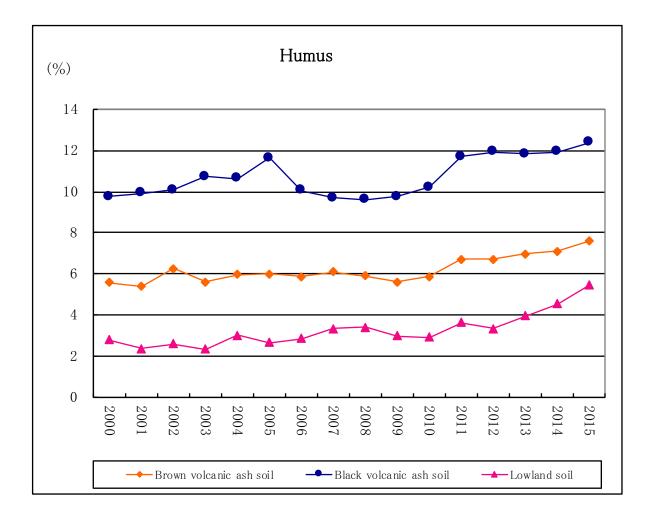

Soil Type	< 0.3	0.4-0.7	0.8-1.2	1.3-1.5	1.6 <
Humic andosoil	Standard rate	2/3	1/2	1/3	No fertilizer
Sandy • Fine textured	Standard rate	2/3	1/3	No fertilizer	No fertilizer
Sand dune/ immature	Standard rate	1/2	1/4	No fertilizer	No fertilizer

Humus

- Humus = Soil organic matter Method of determination
- Rapid estimation by soil color
- Tyurin method (Potassium dichromate oxidation/ Titration)
- Dry combustion method (Instrumental analysis)

Standard Soil Color Chart Hue 7.5YR

Relationship between soil color and organic matter content



Importance of humus

- Soils with high humus content are generally fertile and easily manageable.
- Exception \rightarrow Andosoil (Kuroboku in Japan)
- Supply nutrients (especially N)
- Hold soil moisture
- Hold nutrients (Cation Exchange Capacity)
- Formation of Soil Aggregate Structure

Change in soil humus in Tokachi

Tokach Federation of Agricultural Co-operatives, Institute

Nitrogen Analysis

• Nitrogen is the most important constituent of fertilizer.

Inorganic nitrogen

- Ammonium nitrogen Extracted by 1N KCl, 2N KCl
- Nitrate nitrogen

Extracted by Water, 1N KCl, 2N KCl

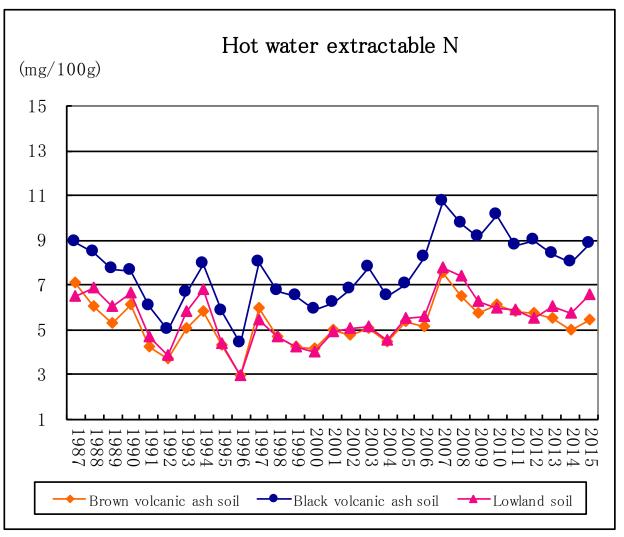
- Determine by steam distillation/ titration or colorimetry
- Rapidly available to crops

Available nitrogen

- Potential amount of inorganic nitrogen formation
- After incubating 4 weeks at 30 °C, total amount of formed inorganic nitrogen is determined.
- Incubation under upland or paddy condition.
- Problem: Time consuming method

Phosphate buffer (pH7) extraction method (Rapid estimation method for available nitrogen)

• Extracted nitrogen content or absorbance at 420 nm of the extracted solution showed high correlation with available nitrogen estimated by incubation method.

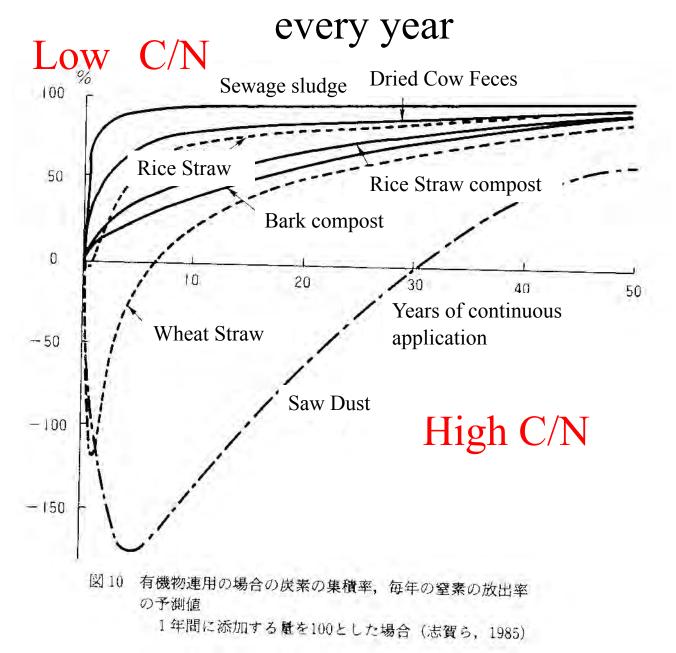

Hot water extractable nitrogen

- Another measure of available nitrogen
- Soil + water (1:10)
- Autoclaved (105 °C/modified to 121 °C, 1 hour)
- Filtered
- Extracted solution is digested by Kjeldahl method
- Nitrogen is determined by colorimetry

Adjustment of N application rate according to hot water extractable nitrogen

Hot water N (mg / 100 g)	N application rate (kg / 10 a)
1, 2	24
3, 4	20
5, 6	16
7, 8	12
9, 10	8
Higher than 11	8

Change in hot water extractable N in Tokachi Tokach Federation of Agricultural Co-operatives, Institute


Total Nitrogen

- Kjeldahl digestion (conc H₂SO₄+K₂SO₄+ Catalyst(Cu, Hg, Se)) Organic N \rightarrow NH₄⁺
- Instrumental (Dry combustion method)
- C/N is calculated
- C/N is related to the pattern and rate of nitrogen mineralization

Kjeldahl digestion apparatus

Release of N from organic matter applied to soil

