

Organisms in surface soil

Plant roots

Mammals

Soil animals

Soil microbes

Biomass of soil organisms /1 ha reaches several tons: 5 t / ha, 0.5kg / m²

Biomass of soil organisms (some t / ha) is almost equivalent to the yield of crops harvested annually from the land, or to the weight of domestic animals bred on the land.

Yield of rice: ca. 5 t /ha = 500 kg / 10 a

Breeding density of cows:

1-2 heads / ha = 1.5 t / ha

Role of soil to the crowd of soil organisms:

Moisture, Oxygen, Temperature, Mineral nutrition, Supply of organic matter

What soil owes to the crowd of soil organisms:

Decomposition of organic matter, emission of carbon dioxide, liberation of mineral nutrients

Creation of soil structure

Supply of fertile plant growth environment

Soil animals (soil fauna)

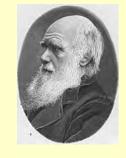
Macrofauna

Animals sized >2mm or 10mm

Earthworms, Enchytraeina, ants, Millipede, Centipede, etc. Population of earthworms :

3000-250,000 /10a, 3-250 /m²

Function of earthworms


Amount of soil passing through the body of earthworm :

4t / 10a annually

In 30-50 years, all the soil in the plowed layer passes through the body of earthworms.

200 t / 4 t = 50 years

Charles Darwin

"The Formation of Vegetable Mould through the Action of Worms, with the Observation of their Habits" (1881)

Japanese translations:

S. Yata (1949), H. Watanabe (1994) (平凡社)

Functions of soil animals: Eating and crushing plant remains and animal feces

- Decomposability of plant remains increases after eaten and crushed by soil animals.
- Animal feces are first eaten and decomposed by the larva of insects (eg. Dung beetles and flies).

Organic matter decomposition by soil animals

Temperate region: Arthropods and earthworms

Tropics and subtropics: Termites

Sub-boreal needle forest: Enchytraeina

Mesofauna

Size: 0.2-2 mm \sim 10 mm

Collembola (spring tails), mites, nematodes

Population:

Collembola and mites: 50,000-80,000 $/m^2$ in forest floors.

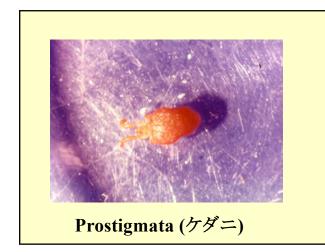
Nematoda: (saprophytic, predatory, parasitic)

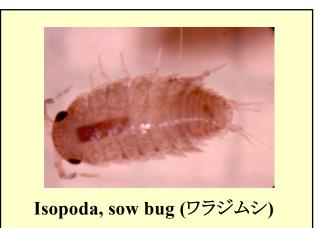
1.30 million /m² in the forest,

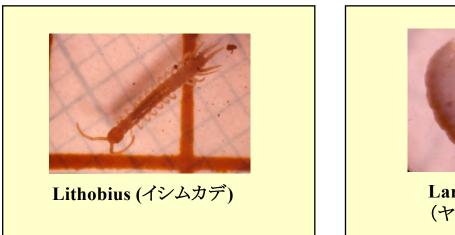
50,000-80,000 /m² in cultivated lands.

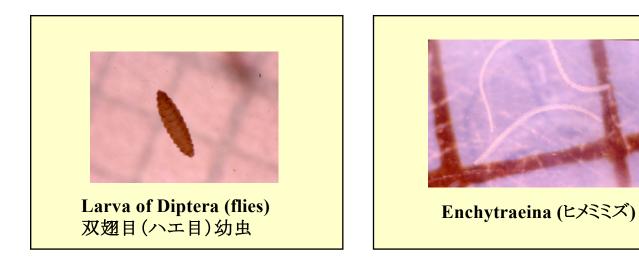
Microfauna

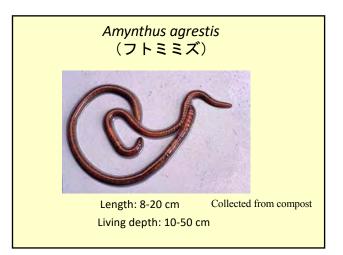
Size: < 0.2mm


Protozoa:


Amoeba, Ciliates, Flagellate







Larva of millipede (ヤスデ綱幼虫)

Population of soil animals $/ m^2$ (Kitazawa, 1976)						
kinds	Needle forest	Mulberry field	Upland field			
Macrofauna	73	16	19			
Enchytraeina (×10 ³)	150	6.5	3.7			
Collembola (×10 ³)	76	5.0	9.3			
Mites (×10 ³)	53	8.1	5.8			
Nematodes (×10 ⁵)	13	7.0	1.4			

Soil microbes

Bacteria, Actinomycetes,

Fungi, Algae

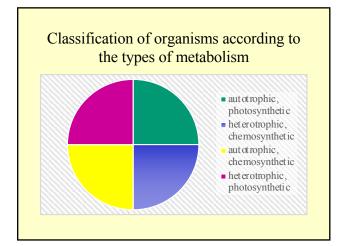
Classification of organism by the method to obtain carbon.

From organic matter....

organotrophs, heterotrophs

From carbon dioxide

lithotrophs, autotrophs

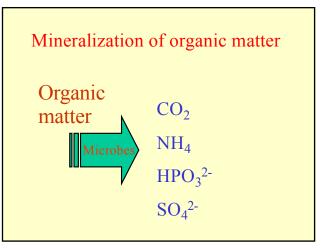

Classification of organism by the method to obtain energy.

From the light

Photosynthetic organisms

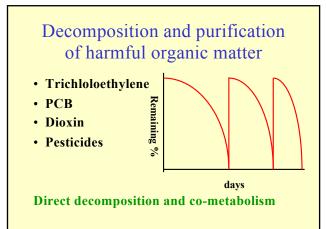
From the chemical compounds, such as methane, hydrogen sulfide, hydrogen gas, etc. ...

Chemosynthetic organisms



Classification of organisms according to the types of metabolism

Types of metabolism	Members of the group
Autotrophic,	Higher plants, algae,
Photosynthetic	Chromatiales bacteria, Chlorobiales bacteria
Heterotrophic,	Animals, fungi, actinomycetes,
Chemosynthetic	most of bacteria
Autotrophic, Chemosynthetic	Ammonium oxidizing bacteria (Nitrosomonas), Nitrite oxidizing bacteria (Nitrobacter), Iron bacteria, Hydrogen bacteria, Sulfur oxidizing bacteria (Thiobacteria)
Heterotrophic,	Purple bacteria
Photosynthetic	(Rhodobacteria, Blastochloris)



- Mineralization of organic matter
- Secretion of soil enzymes
- Decomposition and purification of harmful organic matter
- Symbiotic relationship with plants
- Antagonism (competition) with disease causing germs

Secretion of soil enzymes

- Cellulase
- α-Glucosidase
- β-Glucosidase
- Protease
- Phosphatase
- Lipase

Symbiotic relationship with plants (1)

• Nitrogen fixation

Symbiotic nitrogen fixation Rhizobium, Cyanobacteria, Azolla Associative nitrogen fixation Bacterial nitrogen fixation in the root zone of rice Pseudomonas, Alcaligenes

Non-symbiotic nitrogen fixer bacteria

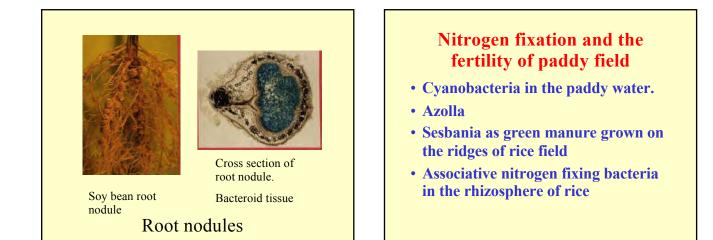
Proteobacteria group Cyanobacteria group Gram positive bacteria group Green sulfur bacteria group General Archaea group

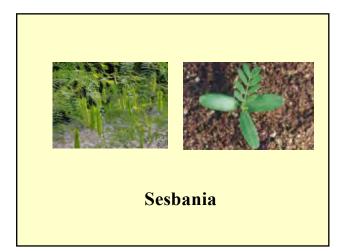
Nitrogen fixation

N₂+2H⁺+8 e⁻+1 6ATP → 2NH₃+H₂+1 6ADP+1 6 phosphate Nitrogenase

 $NH_4^+ \rightarrow Glutamine \rightarrow Glutamic acid \rightarrow \rightarrow$ Protein, Nucleic acid

Ammonia assimilation enzymes

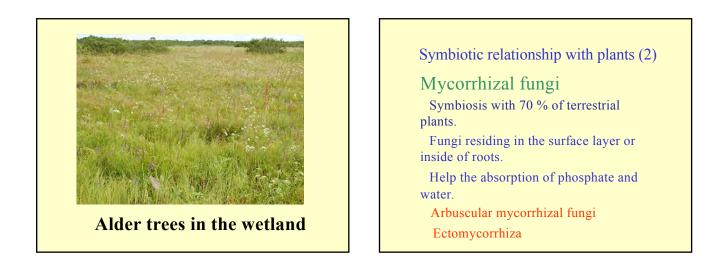

Root nodule bacteria (Rhizobium, Bradyrhizobium, Azorhizobium)

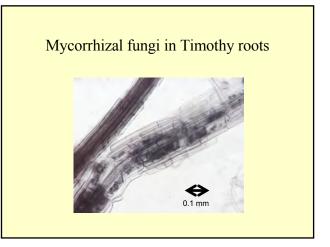

Grouped into Proteobacteria a

Symbiosis with legume plants and Ulmaceae plant, Parasponia

Legume plants are grown in 250×10^{6} ha of land in the world, and 140 kg ha⁻¹ of nitrogen are fixed.

(Total agricultural land area in the world is 1406×10^{6} ha, in Japan 5.1 $\times 10^{6}$ ha)


Cyanobacteria (blue green algae) Have symbiotic relationships with Lichens and mosses, Azolla (Fern plant) Cycad family (Gymnosperm) Gunnera (Angiosperm)


Actinomycetes (Frankia)

Belongs to Gram positive bacteria.

Forms root nodules with alder and Alnus firma as well as many other angiosperm trees in the temperate and tropic region.

Antagonism with disease causing germs

Abundant and heterogenous microbial flora prevents the spread of disease causing germs. *Bacillus subtilis* controls the crop diseases.

Pseudomonas bacteria prevent the seedling diseases of tomato.

Non pathogenic *Fusarium* prevents various wilting and soft-rotting diseases of vegetables.

Microbial biomass in soil

Microbial biomass

occupies 0.3~5.0 % of total soil carbon.

In mineral soils $2\sim 3\%$, in volcanic ash soils $0.3\sim 1.0\%$ in average.

Numbers of microbes: 10⁷~10⁹ / g soil (10 millions ~1 billion/g)

(Fungi occupy ca. 70 % in upland field, grassland, forest, and orchard field, while bacteria occupy 80 – 98 % of total microbes in paddy soils.)

Kind of soils	Texture	Total C (Mg/ha)	Total N (Mg/ha)	Biomass C (kg/ha)
Immature sand dune soil	s	9.4	0.86	32
Light colored ando soil	L	33.4	3.36	114
Humic ando soil	SiL	110	8.33	234
Brown forest soil	CL	20.6	1.69	276
Dark red soil	LiC	83.8	7.49	1,155

土壌サイエンス入門 (Introduction to soil science, 2005) p.169

Methods of soil biomass determination

1) Direct counting method

2) Culture method

3) Biochemical method

1. Direct counting

Jones-Mollison method

Count and measure the microbes in soil suspension with hemo-cytometer.

Fluorescent immuno-staining method

Staining the specific bacterium by its fluorescent antibody.

2. Culture method

Dilution Plate Method (DP)

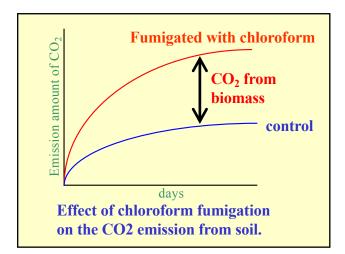
Most Probable Number Method (MPN)

Substrate Induced Respiration Method (SIR)

3. Biochemical method

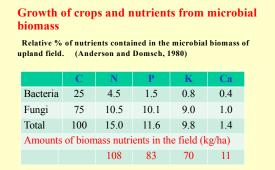
Chloroform fumigation method (applicable to all microbes)

 \rightarrow fumigation-culture and fumigation-extraction methods


ATP method (applicable to all microbes)

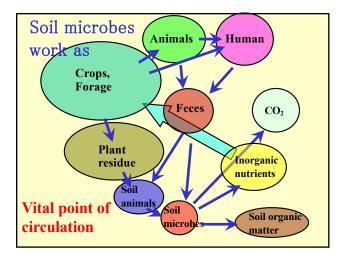
Phospho-lipid (applicable to all microbes)

Muramic acid, diamino-pimelic acid (for bacteria)


Ergosterol (for fungi)

Microcalorimeter (applicable to all microbes)

Functions of soil microbial biomass


- 1) Decomposer of organic matter
- 2) Source and stock of soil nutrients

Showing the balance of nutrient uptake by crops and nutrients supplied from microbial biomass.

Nutrients in microbial biomass and absorbed amounts by crops

	Biomass nutrients	Absorbed nutrients
Germany, upland	100 kg N/ha	40 kg N/ha
England, upland	17 kg P/ha	6.8 kg P/ha
England, pasture	56.8 kg P/ha	22.7 kg P/ha
Philippines, paddy field	44 – 156 kg N / ha	40 – 100 kg N / ha

