
Soil organisms

Kinds, roles and interrelationships

Kiyoshi Tsutsuki

http://timetraveler.html.xdomain.jp

Organisms in surface soil

Plant roots

Mammals

Soil animals

Soil microbes

Biomass of soil organisms /1 ha reaches several tons:

 $5 \text{ t / ha}, \quad 0.5 \text{kg / m}^2$

Biomass of soil organisms (some t/ha) is almost equivalent to the yield of crops harvested annually from the land, or to the weight of domestic animals bred on the land.

Yield of rice: ca. 5 t /ha = 500 kg / 10 a

Breeding density of cows:

1-2 heads / ha = 1.5 t / ha

Role of soil to the crowd of soil organisms:

Moisture, Oxygen, Temperature, Mineral nutrition, Supply of organic matter

What soil owes to the crowd of soil organisms:

Decomposition of organic matter, emission of carbon dioxide, liberation of mineral nutrients

Creation of soil structure

Supply of fertile plant growth environment

Soil animals (soil fauna)

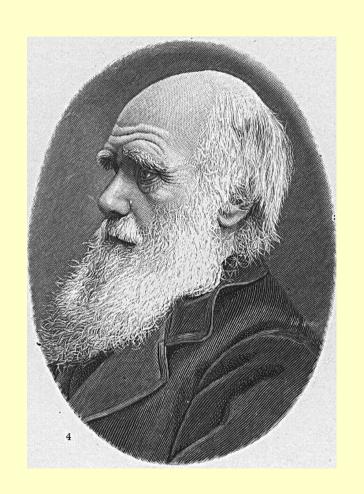
Macrofauna

Animals sized >2mm or 10mm

Earthworms, Enchytraeina, ants, Millipede, Centipede, etc. Population of earthworms:

 $3000-250,000/10a, 3-250/m^2$

Function of earthworms


Amount of soil passing through the body of earthworm:

4t / 10a annually

In 30-50 years, all the soil in the plowed layer passes through the body of earthworms.

 $200 \, t / 4 \, t = 50 \, years$

Charles Darwin

"The Formation of Vegetable Mould through the Action of Worms, with the Observation of their Habits" (1881)

Japanese translations:

S. Yata (1949), H. Watanabe (1994) (平凡社)

Clods of the feces of earthworms

(Baybay, Leyte, Philippines)

Functions of soil animals: Eating and crushing plant remains and animal feces

- Decomposability of plant remains increases after eaten and crushed by soil animals.
- Animal feces are first eaten and decomposed by the larva of insects (eg. Dung beetles and flies).

Organic matter decomposition by soil animals

Temperate region: Arthropods and earthworms

Tropics and subtropics: Termites

Sub-boreal needle forest: Enchytraeina

Mesofauna

Size: 0.2-2 mm \sim 10 mm

Collembola (spring tails), mites, nematodes

Population:

Collembola and mites: 50,000-80,000 /m² in forest floors.

Nematoda: (saprophytic, predatory, parasitic)

1.30 million /m² in the forest,

 $50,000-80,000 / m^2$ in cultivated lands.

Microfauna

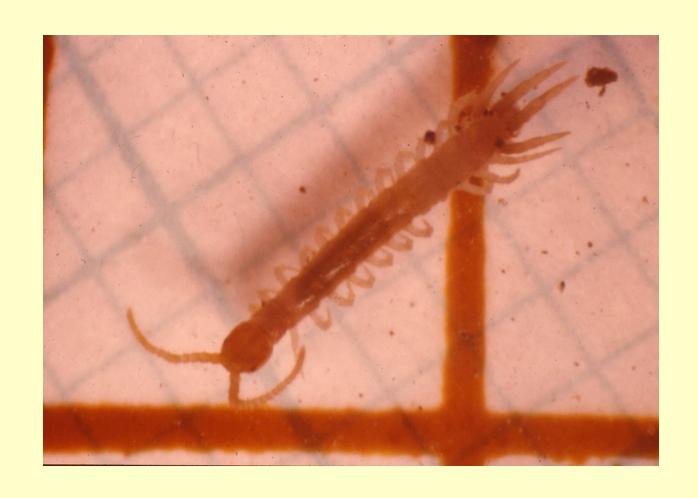
Size: < 0.2mm

Protozoa:

Amoeba, Ciliates, Flagellate

Collembola (アカトビムシ)

Collembola (マルトビムシ)


Oribatid (ササラダニ)

Prostigmata (ケダニ)

Isopoda, sow bug (ワラジムシ)

Lithobius (イシムカデ)

Larva of millipede (ヤスデ綱幼虫)

Larva of Diptera (flies) 双翅目(ハエ目)幼虫

Enchytraeina (ヒメミミズ)

Pratylenchus penetrance (キタネグサレセンチュウ)

Nematodes isolated from OUAVM fields.

Lumbricus rubellus (ツリミミズ)

Length: 6-10 cm

Living depth: 10-25 cm

Collected from compost

Amynthus agrestis (フトミミズ)

Length: 8-20 cm Collected from compost

Living depth: 10-50 cm

Population of soil animals / m² (Kitazawa, 1976)

kinds	Needle forest	Mulberry field	Upland field
Macrofauna	73	16	19
Enchytraeina (×10³)	150	6.5	3.7
Collembola (× 10³)	76	5.0	9.3
Mites (× 10 ³)	53	8.1	5.8
Nematodes (×10 ⁵)	13	7.0	1.4

Soil microbes

Bacteria, Actinomycetes,

Fungi, Algae

Classification of organism by the method to obtain carbon.

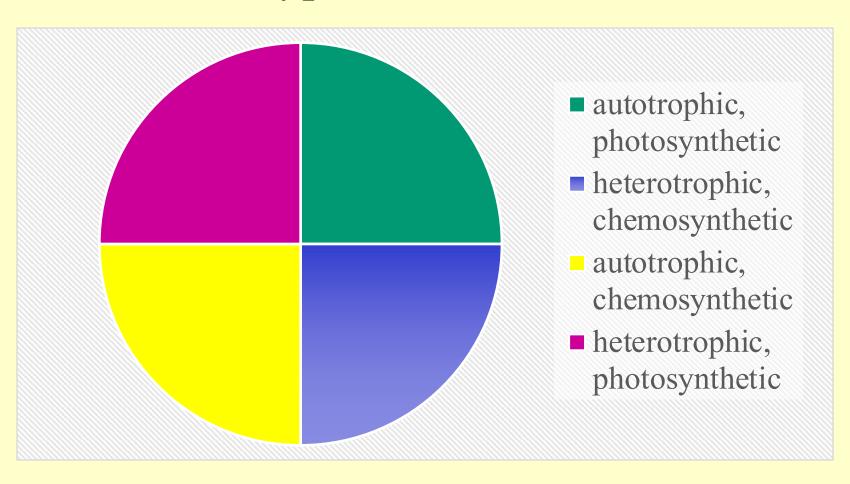
From organic matter....

organotrophs, heterotrophs

From carbon dioxide

lithotrophs, autotrophs

Classification of organism by the method to obtain energy.

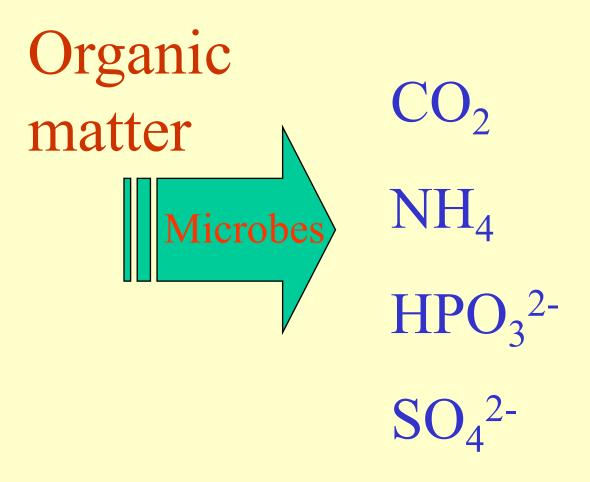

From the light

Photosynthetic organisms

From the chemical compounds, such as methane, hydrogen sulfide, hydrogen gas, etc. ...

Chemosynthetic organisms

Classification of organisms according to the types of metabolism

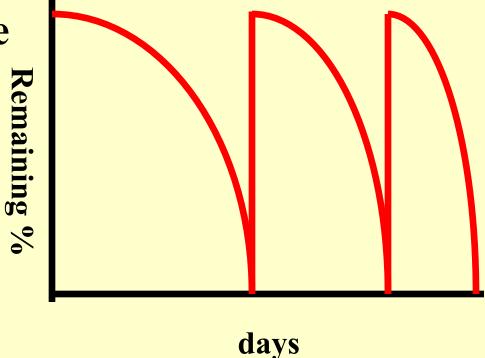

Classification of organisms according to the types of metabolism

Types of metabolism	Members of the group	
Autotrophic, Photosynthetic	Higher plants, algae, Chromatiales bacteria, Chlorobiales bacteria	
Heterotrophic, Chemosynthetic	Animals, fungi, actinomycetes, most of bacteria	
Autotrophic, Chemosynthetic	Ammonium oxidizing bacteria (Nitrosomonas), Nitrite oxidizing bacteria (Nitrobacter), Iron bacteria, Hydrogen bacteria, Sulfur oxidizing bacteria (Thiobacteria)	
Heterotrophic, Photosynthetic	Purple bacteria (Rhodobacteria, Blastochloris)	

Function of soil microbes

- Mineralization of organic matter
- Secretion of soil enzymes
- Decomposition and purification of harmful organic matter
- Symbiotic relationship with plants
- Antagonism (competition) with disease causing germs

Mineralization of organic matter



Secretion of soil enzymes

- Cellulase
- α-Glucosidase
- β-Glucosidase
- Protease
- Phosphatase
- Lipase

Decomposition and purification of harmful organic matter

- Trichloloethylene
- PCB
- Dioxin
- Pesticides

Direct decomposition and co-metabolism