Acidification by fertilizer application

 $(NH_4)_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$

 NH_4^+ is absorbed by crops, and

H⁺ is supplied from soil colloids, root exudates, and

Physiologically acidic fertilizers

- Ammonium sulfate $(NH_4)_2SO_4$
- Ammonium cloride NH₄Cl
- Potassium sulfate K_2SO_4
- Potassium cloride KCl

NH₄⁺ and K⁺ are absorbed, but SO₄²⁻ and Cl⁻ remain in soil, unabsorbed.

Physiologically neutral fertilizers

- Urea $(NH_2)_2CO$
- Ammonium nitrate NH_4NO_3
- Ammonium phosphate $(NH_4)_2HPO_4$
- Same for compost.

All the constituents are absorbed or decomposed.

Acid rain

- $SO_2 + H_2O \rightarrow H_2SO_3$
- $H_2SO_3 + (1/2)O_2 \rightarrow 2H^+ + SO_4^{2-}$
- N₂O, NO, NO₂ + m H₂O + (n/2) O₂ \rightarrow H ⁺ + NO₃ ⁻

Acid sulfate soil

- Iron sulfide (pyrite) is accumulated stably under anaerobic condition in the lake and sea sediments.
- When pyrite is oxidized in air after the reclamation, sulfuric acid is formed.
- $\text{FeS}_2 + nO_2 + H_2O \rightarrow \text{FeSO}_4 + H_2SO_4$
- Frequent problems in reclaimed paddy soils, upland field dressed with soils, and reclaimed wetland soils.

Damage by soil acidity: fixation of phosphate

- $Al^{3+} + PO_4^{3-}$
 - $\rightarrow Al PO_4 \sim Al(OH)_2H_2PO_4$ variscite, (hardly soluble)
- $Fe^{3+} + PO_4^{3-}$
 - $\rightarrow \text{Fe PO}_4 \sim \text{Fe}(\text{OH})_2\text{H}_2\text{PO}_4$ strengite, (hardly soluble)

Exchangeable bases

- Mineral nutrients in the forms of cations in soils.
- Actually, Ca^{2+} , Mg^{2+} , K^+ , Na^+
- It is important that they exist in available form for crops in soil.
- Balance between these cations is important.
- K, Mg should be decreased if they are in excess.

Exchangeable bases (Ca²⁺, Mg²⁺, K⁺, Na⁺)

- Extracted with1M ammonium acetate from soil.
- Determined by the atomic absorption photometer or flame photometer.
- Essential cations existing in available forms in soil.

Exchangeable bases (Ca²⁺, Mg²⁺, K⁺, Na⁺)

- By soil acidification, Ca²⁺ and Mg²⁺ decrease.
- K⁺ reflects the applied amount of potassium fertilizers.
- Na⁺ is high in alkaline soil or in salinized soils. However, not so high in Japan.

Cation Exchange Capacity (CEC)

- Ability of soils to hold cations electrostatically.
- It is due to the negative charges of clay minerals and humus in soil.
- Soil is first saturated with pH7 1M ammonium sulfate, then ammonium ion is eluted out with 1 M KCl. Eluted ammonium is determined by distillation and titration, or by colorimetry (indophenol method).

Soils with high CEC.

- Soils rich in humus.
- Soils rich in clay.

To increase CEC,

- Apply organic matter (compost) continuously.
- Dress soils rich in clay.

Standard values for CEC

- Used as fundamental data for planning the methods of soil improvement and fertilizer management.
- Immature sand dune soil: $3-10 \text{ cmol}_c/\text{kg}$
- Gray lowland soil, light colored ando soils:
 15-25 cmol_c/kg
- Humic ando soils: $20-30 \text{ cmol}_c/\text{kg}$