ALUMINUM AND IRON ANALYSIS FOR SELECTED SOIL SAMPLES

INTRODUCTION

ALUMINUM (AI)

• THIRD MOST ABUNDANT ELEMENT IN THE LITHOSPHERE

• NORMALY IT IS VERY INSOLUABLE AND LOW IN CONCENTRATION IN NATURE IN ITS BIOAVAILABLE FORM.

• IN RECENT TIMES, GETTING MORE IMPORTANCE BECAUSE OF INCREASED RELEASE TO NATURE BY HUMAN ACTIVITIES AND IT'S ADVERSE EFFECTS ON SOILS, PLANTS AND ON HUMANS.

ADVERSE EFFECTS OF ALUMINUM

➢ REDUCED RENAL FUNCTION AND NEUROTOXICITY IN HUMANS AT ELEVATED LEVELS.

> ONE OF THE MAIN REASONS FOR SOIL ACIDIFICATION

> DISTURBS PLANT GROWTH AND FUNCTIONS.

IRON (Fe)

FOURTH MOST COMMON ELEMENT IN EARTH CRUST

> HAS A GREAT IMPORTANCE IN INDUSTRIAL WORLD

> ANESESSARY TRACE ELEMENT FOUND IN ALL LIVING CELLS

> ADVERSE EFFECTS IN DEFICIENT AMOUTS AND AS WELL AS IN ELEVATED AMOUNTS

ADVERSE EFFECTS OF IRON

□ IRON DEFIECNY

SIDEROPENIA OR HYPOFFERREMIA IN HUMANS CHLOROSIS IN PLANTS

Interveinal Chlorosis in river birch

(www.ipm.iastate.edu)

IRON TOXICITYIRON POISONING IN HUMANS

> BRONZING OF RICE AND FRECKLE LEAF OF SUGARCANE

Bronzing of Rice

(http://www.ehow.com /about_6679972_irontoxicity-plants.html)

SOIL SAMPLES USED FOR THE EXPERIMENT

- ✓ TAKIKAWA
- ✓ MOTOIMATSU
- ✓ KAMI-FURANO
- ✓ ENIWA
- ✓ AIKAWA
- ✓ NAKA-FUSHIKO

DETERMINATION OF EXCHANGEABLE AI³⁺ BY ECR METHOD

- \checkmark 10 g of air dry soil was extracted by 100 mL of 1 M KCl.
- ✓ I ml sample solution in 1M KCl was taken in a cuvette
- ✓ 0.1ml of 1% Ascorbic acid was added to the cuvette and was left for 5 minutes
- \checkmark 0.2 ml of 0.0075% ECR solution was added and was left for 5 minutes for complex formation.
- \checkmark At last, 1.2 ml of Hexamethylene-buffer was added.
- \checkmark Absorbance was measured at 535nm.

RESULTS

Exchangeable Aluminum Content of the Soil Samples.

ANALYSIS OF ACTIVE IRON AND EXCHANGEABLE IRON CONTENT

> Exchangeable Iron

> Active Iron

EXCHANGEABLE IRON DETERMINATION

 \checkmark 10g of soil was extracted with 50ml 1M KCI solution.

✓ 2ml of 5% hydroxylamine-HCl was added to 20ml Extractant

✓ 4ml of 0.1% o-phenanthroline was added

 ✓ At last, 3ml of acetate buffer was added and the sample was left for 30minutes.

 \checkmark Absorbance was measured at 508nm.

Exchangeable Fe - Results

Exchangeable Fe content (mg/kg)

Active Fe Determination

✓ 1g air dried soil and 3 g Na_2S_2O4 were taken together.

✓ 100ml0.02M EDTA solution was added and the sample was kept in a 70oC water bath for 15 minutes.

 \checkmark Solution was then filtered and soil residue further washed with 1% NaCl 3 times.

✓ 1ml filtrate was taken and the colorimetric procedures were similar to the exchangeable Iron determination

Active Iron - Results

Active Iron (g/kg)

SUMMARY

SAMPLE NAME	EXCH. Al (ppm)	EXCH. Fe (mg/kg)	ACTIVE Fe (g/kg)
Eniwa	0.995	0.00	10.2
Kami- furano	180	0.38	9.6
Naka- fushiko	0.301	0.13	25.7
Takikawa	552	8.91	4.3
Aikawa	0.482	0.38	10.8
Motoi matsu	259	3.14	19.5