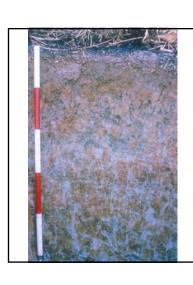


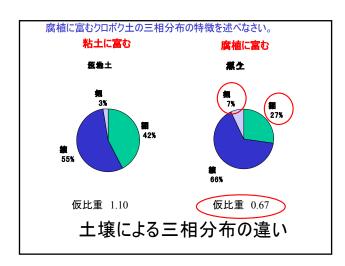
有色鉱物を含む土壌では高くな

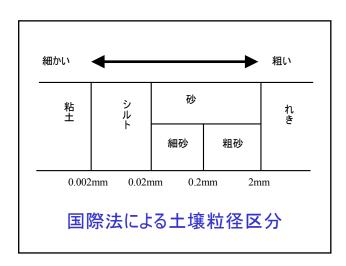

 $(>3.0 \text{ cm}^{-3})$

仮比重

非撹乱土壌の孔隙を含めた密度

砂質土壌 1.1~1.8 黒ボク土壌 0.5~0.8 泥炭土壌 0.2~0.6

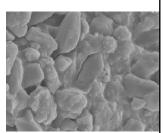



る

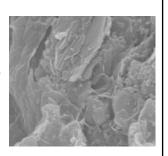
固い土

灰色台地土 (滝川)

岩石の風化によって土の粒子ができる ・砂の粒子を


・ 砂の粒子を 観察すると、 その土がどの ような岩石に 由来している のかがわかる。

シルトの粒子


- シルト粒子の大きさは 0.002mm-0.020mm
- ・ ほとんどのシルト粒子は 石英からなっている。そ の他の鉱物は風化に よって完全に分解され ているため。
- シルトは、滑らかな感触がある。

粘土 最も小さな土壌粒子

- ・ フレークのような形
- 粘土は土壌中でケイ酸や水酸化アルミニウムが再結合してできる。シルトがさらに細かくなったものではない。
- 粘土粒子の直径は 0.002mm以下と定 義されている。

粘土

- ・湿った粘土は粘着性と可 塑性が高く、自由に形を 整えられる。
- 細長いひも状に伸ばすことができる。
- 種類によって、膨潤したり 収縮したりする。

湿った状態では非常にねばつき、

・ 乾くと、かちかちに 固まる。

粘土質の土壌

土壌成分の構成と表面積の関係 (計算例)

	直径	重量%	表面積%
砂	100 μm	33%	0.1%
シルト	20 μm	33%	1%
結晶性 粘土	1 μm	32%	14%
アロフェン	0.005 μm	1%	85%

土性

土性とは、土壌中の砂、シルト、粘土の相対割合で 示される特性である。

土性を知るだけで

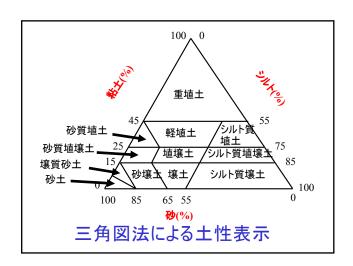
- 1) 水分の透過性,
- 2) 水分保持能
- 3) 土壤肥沃度
- 4) 都市建造物を支える地耐力などに関する情報を得ることができる。

土性を示す用語

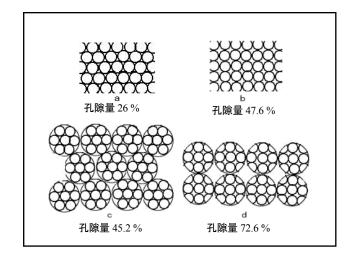
- ・埴土 (Clay) 粘土に富む土
- ・壌土 (Loam) 粘土・シルト・砂が適当に混ざった肥沃な土 (ローム)
- 砂土 (Sand) 砂に富む土

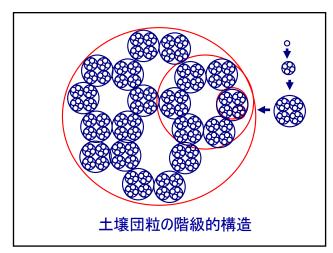
野外土性と判定法

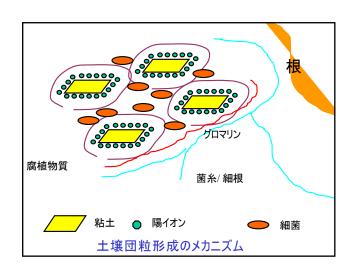
粘土と砂との割合の感	細土 (¢ 2 mm以下)	記号	区分	親指と人差し
じ方	中の粘土(%)			指でひも状に
				のばしてみま
				しょう
ざらざらとほとんど砂だ	12.5以下	S	砂土	かためること
けの感じ				はできない
大部分(10~80%)	12.5~25.0		砂壤土	かためること
砂の感じでわずかに粘土		SL		はできるが棒
を感じる				にはできない
砂と粘土が半々の感じ	25.0~37.5	L	壤土	鉛筆くらいの
				太さにできる
大部分粘土で一部(20	37.5~50.0		埴壌土	マッチ棒くら
~30%)砂を感じる		CL		いの太さにで
				きる
ほとんど砂を感じないで	50以上		埴土	こよりのよう
ぬるぬるした粘土の感じ		C		に細長くなる
が強い				

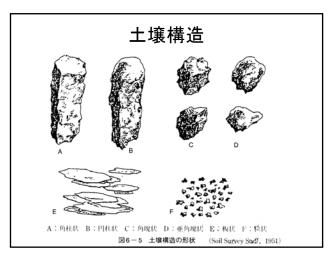

野外土性 砂壌土と壌質砂土の違い

砂壌土 (Sandy loam)


壤質砂土 (Loamy sand)




土壌団粒


できかたと役割

土壌構造

板状構造 粒状構造

柱状構造

良い土壌構造を 持つ土は健康な 土である。

土壌構造ができる原因

- 乾燥・湿潤の繰り返し
- 凍結
- 植物の根の働き
- 土壌動物

土壌中の水

2回目「植物の生育と根圏」でも話したので、ここでは概 要だけにします。

水保持ポテンシャル (マトリックポテンシャル)の表し方

圧力の単位 Pa (パスカル) の定義

 $1 \text{ Pa} = 1 \text{ N/m}^2 = 1 \text{ kg m/sec}^2 / \text{m}^2$

水柱の高さとの換算

高さ1 mの水柱の圧力

 $100 \text{ gw/cm}^2 = 10^6 \text{ gw/m}^2 = 10^3 \text{ kgw/m}^2$ = 9.8×10^3 kg m/sec²/m² = 9.8 kPa

最大容水量(飽和容水量)

• 土壌の全孔隙が水で占められている ときの水分量

> 重力水 φ= 0 kPa pFでは表せない。 (log 0となるため)

圃場容水量

・多量の降雨もしくはかん水した1 ~2日後、水の下降速度が非常 に小さくなったときの水分量

易有効水 φ= -6 kPa pF=1.78 (土壌の種類によって多少異なる)

生長阻害点

・作物が健全に生育できる範囲の水分

易効性有効水分 φ= -49 ~ -98 kPa pF = 2.7 ~ 3.0 水柱の高さにして 5 ~ 10 m

初期萎凋(シオレ)点

• 植物がしおれはじめる時の水分

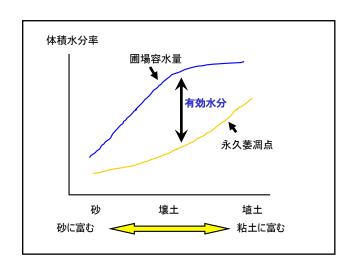
難有効水 φ= - 600 kPa pF = 3.78

永久萎凋(シオレ)点

・飽和蒸気圧下で水分を補給しても 植物が生き返らない水分点

非有効水 φ= - 1,500 kPa pF = 4.18

1,500 kPa = 10.2 × 1,500 cm = 15,300 cm = 153 m (水柱153m に相当する張力)


有効水とは

(圃場容水量から永久萎凋点まで)

- マトリックポテンシャルが-6 ~-1 500
 - -6 ~-1,500 kPa まで

の水分

- pFが 1.78 ~4.18 まで
- 水柱の高さでとして 60.2 cm から 15136cm (152 m)まで
- 毛細管の半径として 0.0244 mm (シルト) から 9.67×10⁻⁵ mm (約0.1 μm :細粘土の半径)まで

有効水分

砂土や重粘土では低く、 壌土で高い。

土壌有機物や堆肥も有効水分を増やす ことができる。

土壌空気

土壌空気の特徴

成分	大気中の容積%	土壌中(大気中含量 に対する比率)
N ₂	78.1	0.96 - 1.15 倍
O_2	20.9	0.09 - 1.0 倍
Ar	0.93	1.0-1.2 倍
CO ₂		3-30 倍
CH ₄		~30000 倍
N ₂ O	0.00003	~ 33000 倍
相対湿度	30 – 90 %	100 %

作物の種類と必要空気率

要求程度	必要空気率	作物
最大	> 24 %	キャベツ インゲン
大	> 20 %	カブ キュウリ 小麦 大麦コモンベッチ
中	> 15 %	エンバク ソルゴー
小	10 %	イタリアンライグラス 稲 タマネギの生育初期

適正な土壌空気組成

- 気相率 10-15%
- •酸素 10%以上
- CO₂ 8%以下

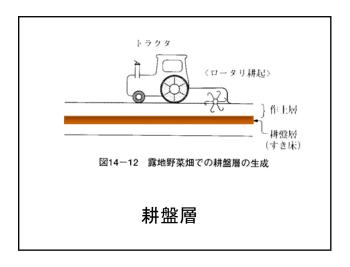
土壌空気中の酸素濃度

神奈川県 伊勢原市	火山灰土	愛知県 武豊町	非火山灰 土
深さ	酸素%	深さ	酸素%
20 cm	20.2 - 20.8	0 – 10 cm	19.1 – 20.7
50 cm	20.0 - 20.6	10 - 20 cm	19.4 – 20.8
100 cm	19.5 – 20.0	20 – 30 cm	14.2 – 14.8

土壌空気中のCO2濃度

神奈川県伊勢原市	火山灰土	愛知県 武豊町	非火山灰 土
深さ	CO ₂ %	深さ	CO ₂ %
20 cm	0.14 - 0.25	0 – 10 cm	0.43 – 1.51
50 cm	0.30 - 0.54	10 – 20 cm	0.60 - 1.91
100 cm	0.51 - 0.98	20 – 30 cm	5.89 – 6.20

火山灰土では土壌中の空気が動 きやすい。 作物の生育に好ましい。


耕耘が農耕地土壌に 及ぼす効果

耕うんの効果

- 土壌をやわらかくし、水と空気の保持容量を増やす。
- 雑草や病害虫のサイクルを断つ。
- 作物残渣、堆肥、肥料などを混和する。
- ・ 土壌養分の偏りをなくす。
- 最適な発芽環境や初期生育の確保
- 根域の拡大や土壌微生物活性の促進

耕うんのデメリット

- 所要エネルギーが非常に大きい。
- 裸地化により土壌侵食を受けやすい。
- 土壌の地耐力が減少。降雨後の機械作業ができない。
- 強雨によりクラスト(粘土皮膜)ができる。
- 下層土が混入する。
- 重たい機械により耕盤層ができる。
- 土壌有機物の分解を促進する。

作物生産と土壌物理性 土壌診断基準項目

・ 心土の緻密度 16-20

作土の固相率 25-30(火山灰土)

40 以下 (低地土・台地土)

· 容積重 70 – 90 (火山灰土)

90-110 (低地土・台地土)

• 粗孔隙率 15 - 25

• 易有効水容量 15 - 20

• 砕土率 (粒径が2cm以下の土塊の割合) 70% 以上

作物生産と土壌物理性 土壌診断基準項目(続)

作土の深さ 20-30 cm有効土層の深さ > 50 cm

• 飽和透水係数 10⁻³ – 10⁻⁴ cm/sec

• 地下水位 60 cm 以下

・耕盤層の判定 山中式硬度計で20以上 貫入式硬度計で1.5MPa以上は耕盤層と判 定

作物の生育には下層土も大切

- ・ 畑作物は養分の半分以上を下層土から吸収している。
- 下層土からの水分吸収も重要。
- 耕盤層ができると、下層土に根が伸びなくなる。
- 水はけが悪くなり、作土層での根の生育も阻害される。

耕起と不耕起における作業時間の比較

播種方	作業時間(分/10a)			
法	ロータリー耕	播種	除草剤散布	#H
耕起法	38	26	11	75
不耕起法	← 15 →			15

不耕起栽培の効果

- 風食・水食による土壌損失の軽減。
- 土壌有機物分解の抑制。
- 省力・低コスト化。
- ・ 地耐力が大きく、天候に関わらず適期作業が可能。
- 作物残渣の土壌表面被覆・鳥害の抑制。
- 浸潤性や保水性に優れる。
- 植物残渣の地表面への富化・地力維持

不耕起栽培のデメリット

- ・土壌硬度の増大 生育不良 湿害
- 肥料の利用効率低下 (揮散・脱窒)
- 植物残渣による地温低下 発芽不揃い 病 害虫発生
- 除草剤の使用量増加
- ・ 根菜類の栽培困難

土壌物理性悪化の要因と対策自然的要因

地形

傾斜の修正・平坦化 排水の改良(暗きょ・明きょ)

- ・ 土壌の種類 (重粘土、砂土)
- ・対策 各種の土壌改良 客+

有機物施用 · 緑肥 · 輪作

土壌物理性悪化の要因と対策 人為的要因

• 農業機械

機械の改良 農作業工程の見直し

- 有機物・堆肥の不施用
- 土壌有機物の分解・土壌侵食
- 土壌生物の不活性化

堆肥の施用・緑肥の栽培・輪作体系の確立 不耕起栽培

土壌物理性の低下と営農問題

- ・ 水田作土層が浅くなっている。
 - → 水稲の収量と品質が低下。
- ・ 畑地の作土が硬くなり、排水不良化。
 - → 野菜類の収量と品質が低下。
 - → 特にキャベツの生育不良
- ・ 畑地で硬盤が形成される。
 - → 根菜類(ダイコン・ニンジン等)の 収量と品質が低下(くびれ症状)。

土壌物理性の低下と土壌病害

- 排水の悪い土壌。
 - → ハクサイ・キャベツの根こぶ病
 - → ナスの青枯れ病
- 畑地の作土が硬くなっている。
 - → タマネギの乾腐病