
植物生產土壤学6

土壤生物

その種類と役割、相互関係

表土中の生物

植物根

哺乳動物

土壤動物

土壤微生物

1 ha 当りの土壌生物の生体重は数 t に達する。5 t / ha 0.5kg / m² 土壌生物の生体重(数 t/ha)は、 その土地から1年間に収穫される 作物の量あるいはその土地で養われる家畜の体重にも匹敵する。

米の収量 約5 t / ha = 500 kg / 10 a

牛の飼養密度 1-2 頭 / ha

= 1.5 t / ha

土壌生物群集にとっての 土壌の役割

水分 酸素 温度

無機養分 有機物の供給

土壌生物群が土壌に与えるもの

有機物の分解、二酸化炭素の発生、無機養分の放出、

土壌構造の創出

肥沃な植物生育環境の提供

土壤動物 (soil fauna)

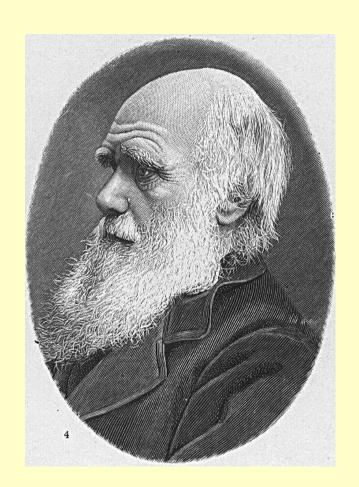
大型動物 (macrofauna)

体長2mmないし10mm以上の動物

ミミズ、ヒメミミズ、アリ、 ヤスデ、ムカデ等

ミミズ 3000-250,000匹/10a 3-250 匹/m²

土壌動物の働き:


土を耕すミミズ

ミミズの体内を通過する土の量 4t/10a年

約30-50年で作土中の土壌全部がミミズの体内を通過する。

200 t / 4 t 年 = 50 年

チャールズ・ダーウィン

「ミミズの習性に関する 観察と、ミミズの働きを 通じての腐植土壌の形 成」 1881年

邦訳:「ミミズと土」

谷田専治 1949, 渡辺弘之 1994 (平凡社ラ イブラリー)

ミミズの糞塊

(フィリピン、レイテ島、Baybayにて)

土壌動物の働き: 植物遺体・糞の摂食粉砕

- 植物遺体は土壌動物に摂食されることにより粉砕され、分解性が高まる。
- 動物の糞は、まず昆虫の幼虫により 摂食され分解される(フンコロガシ、 ハエの幼虫)。

土壌動物による有機物分解

温帯では節足動物とミミズ

熱帯、亜熱帯ではシロアリ

亜寒帯針葉樹林ではヒメミミズ の役割が重要

中型動物 (mesofauna)

体長0.2-2mm~10mm

トビムシ、ダニ、線虫等

トビムシ、ダニ 林地では5-8万/m²

線虫 (腐食性、捕食性、寄生性)

林地 130万/m² 耕地 5-8万/m²

小型動物(microfauna)

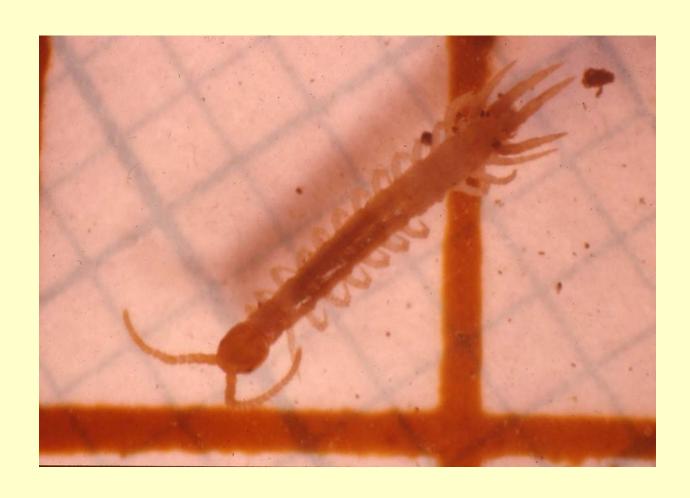
体長0.2mm以下

原生動物(protozoa)

アメーバ 繊毛虫 鞭毛虫

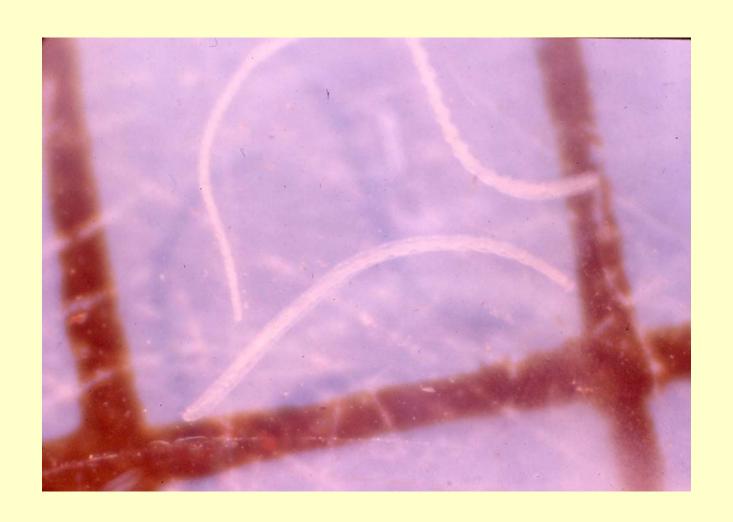
アカトビムシ

マルトビムシ


ササラダニ

ケダニ

ワラジムシ


イシムカデ

ヤスデ綱幼虫

双翅目(八工目)幼虫

ヒメミミズ

Lumbricus rubellus (ツリミミズ)

体長: 6-10 mm

棲息深度: 10-25 mm

畜大の堆肥から採集

Amynthus agrestis (フトミミズ)

棲息深度: 100-500 mm

土壌動物の個体数/ m² (北沢, 1976)

種類	針葉樹林	桑畑	畑地
大型動物	73	16	19
ヒメミミズ (×10 ³)	150	6.5	3.7
トビムシ(×10³)	76	5.0	9.3
ダニ類 (×10³)	53	8.1	5.8
線虫(×10 ⁵)	13	7.0	1.4

土壤微生物

細菌、放線菌、

糸状菌、藻類

炭素の獲得様式による生物の分類

有機物から.... 有機栄養生物

(従属栄養生物、

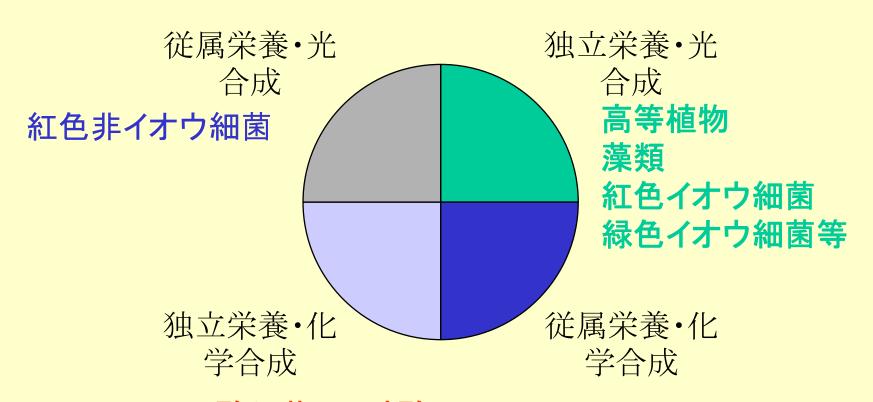
organotrophs, heterotrophs)

二酸化炭素から.... 無機栄養生物

(独立栄養生物、

lithotrophs, autotrophs)

エネルギーの獲得様式によ る生物の分類


光から.....

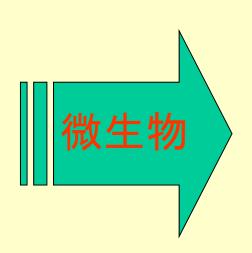
光合成生物

化合物から...

化学合成生物

代謝形式による生物の分類

アンモニア酸化菌、亜硝酸酸化菌、鉄細菌、水素細菌、 硫黄酸化菌


動物、糸状菌、放線菌、 大部分の細菌

土壌微生物の働き

- 有機物の無機化
- ・ 土壌酵素の分泌
- 有害有機物の分解と浄化
- 植物との共生関係
- 病原菌との拮抗

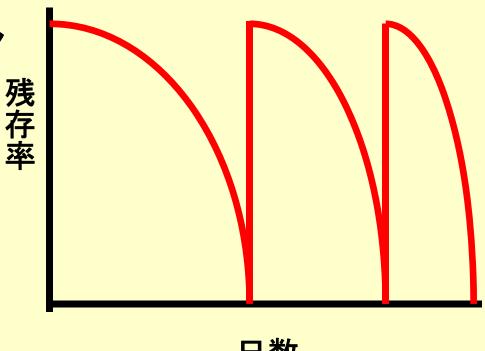
有機物の無機化

有機物

 CO_2

 NH_4

 HPO_3^{2-}


SO₄²⁻

土壌酵素の分泌

- ・セルラーゼ
- α-グルコシダーゼ
- β-グルコシダーゼ
- プロテアーゼ
- フォスファターゼ
- ・リパーゼ

有害有機物の分解浄化

- ・トリクロロエチレン
- PCB
- ・ダイオキシン
- 農薬類

日数

直接分解とコメタボリズム

植物と微生物との共生関係1

• 窒素固定

共生的窒素固定 根粒菌 らんそう アカウキクサ 共同窒素固定 イネ根圏での細菌による窒素固定 Pseudomonas, Alcaligenes

非共生窒素固定菌

(non-symbiotic nitrogen fixer)

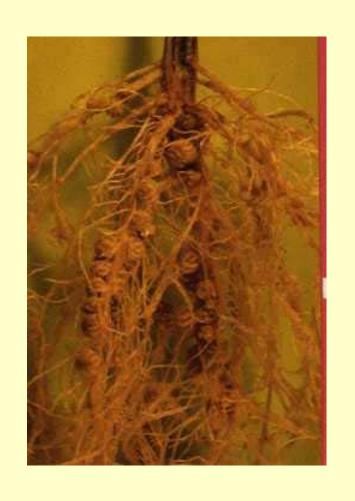
プロテオバクテリアグループ シアノバクテリアグループ グラム陽性細菌グループ 緑色イオウ細菌グループ 一般古細菌グループ

窒素固定 (nitrogen fixation)

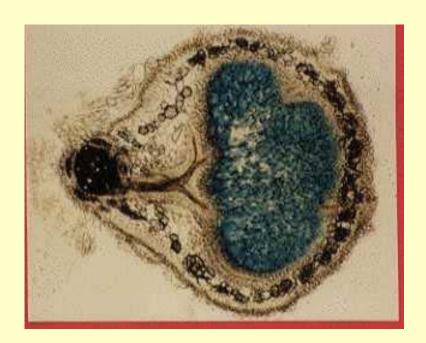
$$N_2 + 2 H^+ + 8 e^- + 16 ATP$$
 → $2 NH_3 + H_2 + 16 ADP + 16 リン酸 (ニトロゲナーゼ)$

 $NH_4^+ o$ グルタミン o グルタミン酸 o o タンパク質・核酸

(アンモニア同化系酵素群)


根粒菌 (Rhizobium, Bradyrhizobium, Azorhizobium)

プロテオバクテリアαに属す


マメ科植物およびニレ科植物のParasponia と共生

世界中の 250×10^6 haの土地でマメ科植物が栽培され、平均 $140~kg~ha^{-1}$ の窒素を固定

(世界の農耕地面積1406×10⁶ ha、日本の 農耕地面積5.1×10⁶ ha)

大豆根粒菌

根粒の切片バクテロイド組織

根粒の写真

水田地力維持と窒素固定

- ・ 田面水中の藍藻(シアノバクテリア)
- アゾラ (アカウキクサ)
- 畦に生えるセスバニア
- イネ根圏の共同的窒素固定菌

セスバニア

シアノバクテリア (らんそう)

地衣類、コケ類、

シダ植物のアカウキクサ(Azolla)、

裸子植物のソテツ科、

被子植物のグンネラなどの

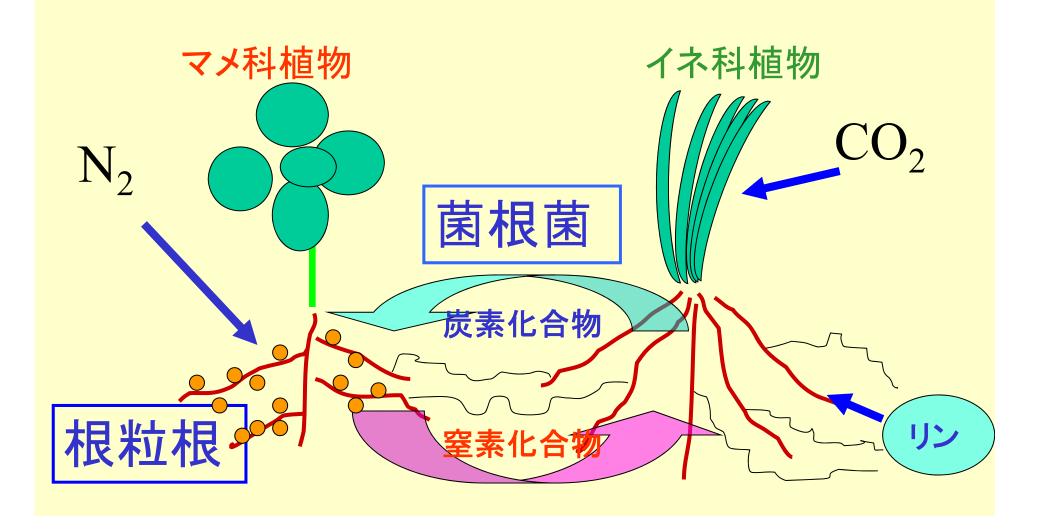
広範囲の植物と共生する。

アゾラの写真

放線菌(Frankia)

グラム陽性細菌群に属す。

温帯・亜熱帯の多くの被子植物の 科(ハンノキ、ヤシャブシなど) に根粒を形成


湿原に生えるヤチハンノキ

植物と微生物との共生関係2


菌根

陸上の7割の植物と共生 糸状菌が植物の根の表面あるいは内部に着生したもの リン酸と水分の吸収促進 アーバスキュラー菌根 外生菌根

窒素固定植物から他の植物 への窒素の転流

チモシーの根の菌根菌

病原菌との拮抗

豊富な微生物相は特定の病原菌の蔓延を抑制する。

Bacillus subtilis による作物病害防除 Pseudomonas属菌によるトマト青枯病菌 防除

非病原性Fusariumによる各種萎凋病・ 軟腐病防除

土壌の微生物バイオマス

微生物バイオマス

土壌全炭素量の 0.3~5.0 %

鉱質畑土壌では平均2~3%、火山灰土壌では0.3~1.0%

微生物数:土壌1g当り10⁷~10⁹ (1千万~10億個/g)

(畑地、草地、林地、樹園地では約70%が糸状菌、水田では80~98%が細菌で占められる。)

日本のいくつかの土壌における有機物とバイオマス炭素含量

土壌の種類	土性	全炭素 (Mg/ha)	全窒素 (Mg/ha)	バイオマス炭素 (kg/ha)
砂丘未熟土	S	9.4	0.86	32
淡色黒ボク土	L	33.4	3.36	114
腐植質黒ボク土	SiL	110	8.33	234
褐色森林土	CL	20.6	1.69	276
暗赤色土	LiC	83.8	7.49	1,155

Sakamoto and Hodono: SSPN, 46, 483-490 (2000) 土壌サイエンス入門 p.169 より

土壌中バイオマスの 測定法

- 1) 直接計数法
- 2) 培養法
- 3) 生化学的方法

1. 直接計数法

Jones-Mollison 法

血球計を用いて土壌懸濁液中の 菌数および菌のサイズを測定す る。

蛍光抗体染色法

蛍光抗体による特定細菌の標本 染色

2. 培養法

希釈平板法 (DP法)

Dilution Plate Method

希釈頻度法 (MPN法)

Most Probable Number Method

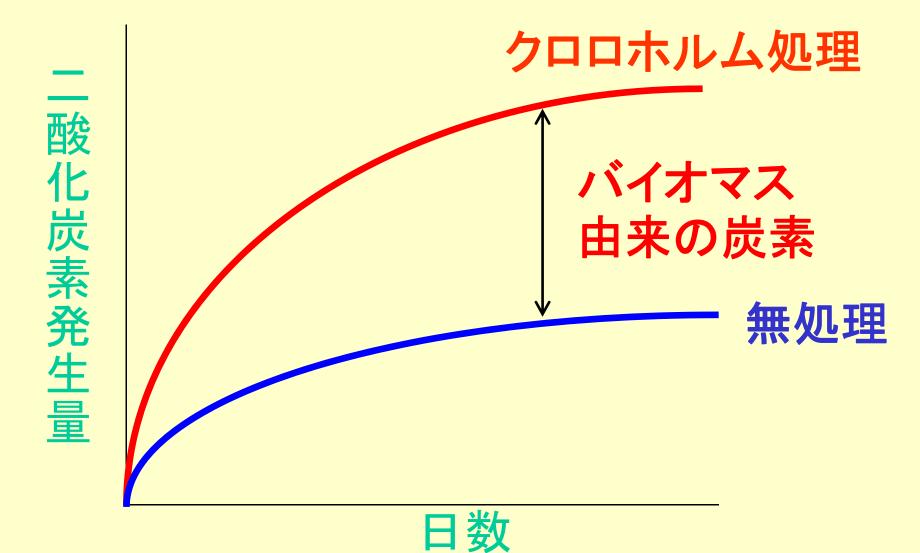
基質誘導呼吸法 (SIR 法)

Substrate Induced Respiration Method

3. 生化学的方法

クロロホルム燻蒸法 (全ての微生物)

→燻蒸培養法と燻蒸抽出法がある。


ATP法 (全ての微生物)

リン脂質法 (全ての微生物)

ムラミン酸、ジアミノピメリン酸(細菌)

エルゴステロール (糸状菌)

微小熱量計法(全ての微生物)

クロロホルム処理が土壌の二酸化 炭素発生に及ぼす影響

土壌微生物バイオマスの機能

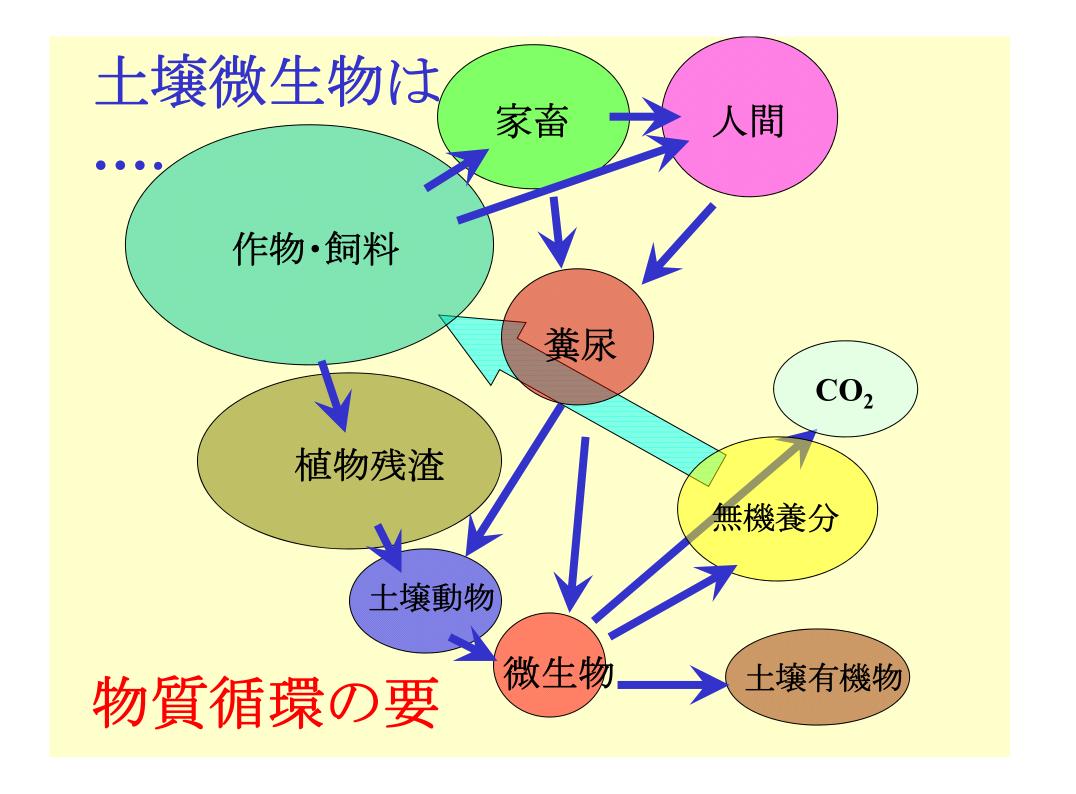
- 1) 有機物の分解者
- 2) 養分の貯蔵庫と供給源

バイオマス養分と作物生育

畑土壌のバイオマスに含有される養分の相対比%

(Anderson and Domsch, 1980)

	С	N	P	K	Са
細菌	25	4.5	1.5	0.8	0.4
糸状菌	75	10.5	10.1	9.0	1.0
計	100	15.0	11.6	9.8	1.4
× 2.1. → 关 // 目 x //					


バイオマス養分量 kg/ha

108 83 70 11

バイオマス養分量と作物による吸収量の釣合

バイオマス養分量と養分吸収

	バイオマス養分 量	養分吸収量
ドイツ畑土壌	100 kg N/ha	40 kg N/ha
イギリス畑	17 kg P/ha	6.8 kg P/ha
イギリス草地	56.8 kg P/ha	22.7 kg P/ha
フィリピン水田	44 – 156 kg N /	40 – 100 kg N /
	ha	ha

