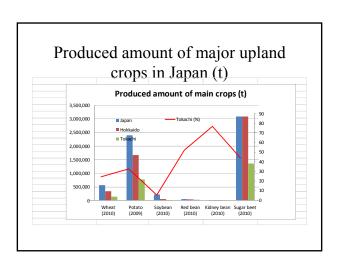
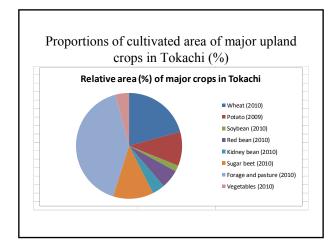
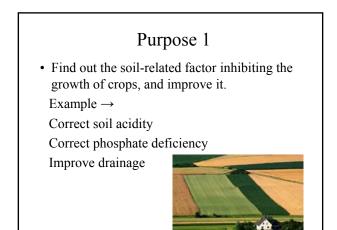
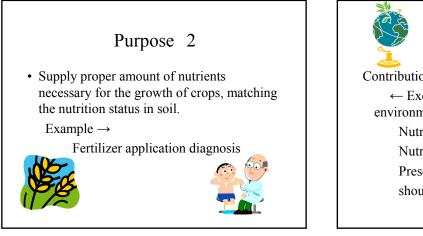
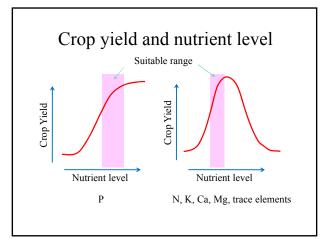

The year 2015 was International Year of Soils

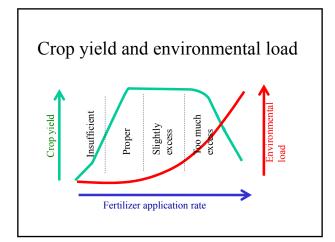

Why Soil Year 2015?


- Healthy soil is a basis for healthy food production.
- Soils support our plant's biodiversity and they host a quarter of the total.
- Soil is a non-renewable resource, its preservation is essential for food security and our sustainable future.


Why Soil Year 2015?

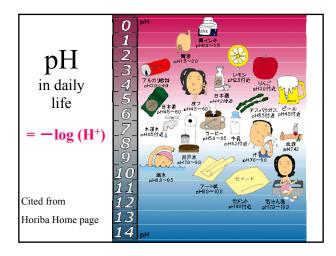

- Soil stores and filter water improving our resilience to flood and drought.
- Soils are foundation of vegetation which is cultivated or managed for feed, fibre, fuel, and medicinal plants.
- Soils help to combat and adapt to climate change by playing a key role in the carbon cycle.

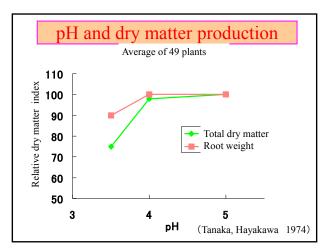


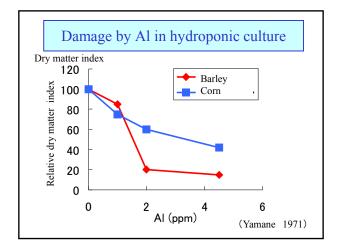


Disorder in crop growth caused by nutrition status of soil

- Scab disease of potato (too high soil pH)
- Infertility of rice Softning (excess nitrogen, silicate deficiency)
- Bolting phenomena of vegetables (excess phosphate)




Disorder in crop growth caused by nutrition status of soil (2)


- Calcium deficiency of vegetables (Imbalance in basic cations)
- Decrease in quality of vegetables Lowering in sugar and vitamins (accumulation of nitrate)

pH and crop growth (vegetables, root crops)				
Low pH tolerance Kind of crops				
strong (4.0~5.0)	potato•taro			
Little strong (4.5~6.0)	Sweet potato•radish•turnip•kidney bean•carrot•cucumber•parsley			
Little weak (5.5~6.5)	tomato•egg plant•cabbage•broccoli• celery•green pea•melon			
Weak (6.0~7.0)	spinach•onion•leek•burdock• asparagus•red pepper•lettus			

pH and crop growth (grain•pasture)		
Low pH tolerance Kind of crops		
strong (4.0~5.0)	rice • tea • tobacco	
Little strong (4.5~6.0)	^{ng} wheat • thimothy	
Little weak (5.5~6.5)	Azuki bean • clover • milk vetch	
Weak (6.0~7.0)	beet • barley • rye	

酸性			7	ルカリ	性		
pH ∰ 中 38 0 4.5 5.0 5.5 6.0	* 6.5 7.0	7.5	91 中 8.0	_ 8.5	9.0	1 9.5	рН 10.0
	窒素 (N	1					
	リン (P)						
	カリウム (K)			-			
	イオウ (S						
		カル	シウム (Ca)			10000	
		マグ	ネシウム(ト	(lg)			
鉄・アルミニウム (Fe, Al)	- L - H		· · ·				
マンガン (Mn)						a construction of the second	
ホウ素 (B)							
銅·亜鉛 (Cu,Zn)	1 1			1	-		
			モリブデン	(Mo)	1000		

Soil acidity and crop growth (1)

- A) damage by hydrogen ion
- B) damage by Al ion
- C) deficiency in Ca and Mg

Soil acidity and crop growth (2)

- D) phosphate deficiency binding of Al and phosphate
- E) Boron deficiency
 Mo deficiency
 --→serious in legume plants
- F) excess damage by Mn Mn is soluble at low pH

Soil acidity and crop growth (3)

G) suppress organic matter decomposition

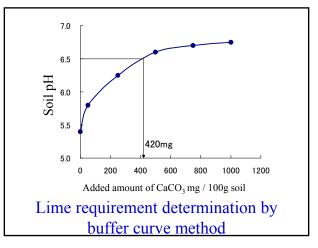
mineralization of N and P increase on improvement of soil acidity

H) change in microbial flora

Fungi prefer acid, bacteria and actinomycetes prefer alkaline pH.

Soil acidity and crop growth (4)

- I) Suppress nitrogen fixation
 - optimum pH 6.5~7.5
- J) Suppress nitrification


On liming, nitrification ability increases remarkably.

Improvement of soil acidity(1)

Calcite, Lime (CaCO₃)
 3 times amount of exchangeable acidity (y₁)
 Buffer curve method

• Gypsum (CaSO₄)

Al³⁺ in subsoil can be replaced by Ca²⁺ due to high solubility of gypsum

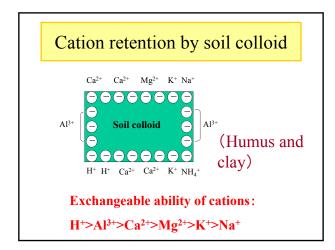
Calculation of lime requirement (example) Goal pH $6.5 \rightarrow CaCO_3420 \text{ mg} / 100\text{g soil}$ = 4.2g / kg = 4.2 kg / tAmount of soil in 1 ha up to 15 cm depth $= 100\text{m} \times 100\text{m} \times 0.15\text{m} = 1500 \text{ m}^3$ $\Rightarrow 1500 \text{ Mg} = 1500 \text{ t}$ (bulk density $\Rightarrow 1$) Lime requirement / 1 ha is $4.2 \times 1500 = 6300 \text{ kg}$

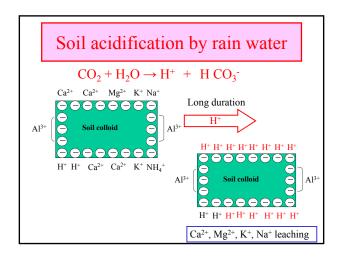
Improvement of soil acidity(2)

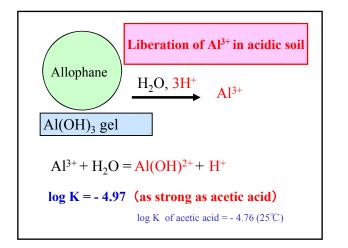
• Large application of phosphate material

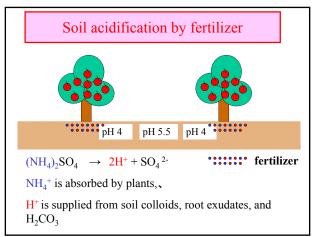
because phosphate solubility is low under low pH

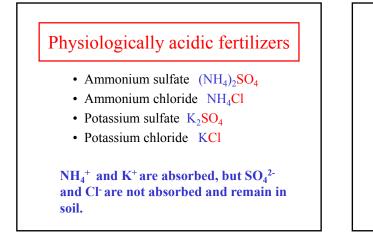
• Supply of organic matter to give buffering capacity to soil


If soil pH becomes too high,


Nutrient deficiency occurrs.

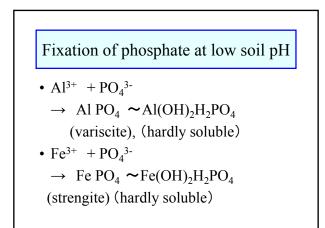

Phosphate, calcium, magnesium, boron, iron, manganese, zinc


Mechanisms of soil acidification

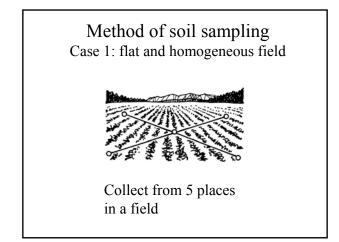

- Due to CO₂ in rain water
- Al in acidic soil
- Fertilizer application
- Acid rain
- Acid sulfate soil

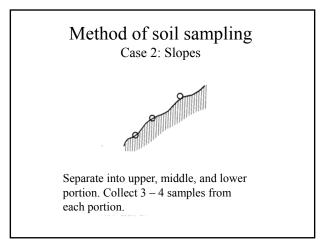
Physiologically neutral fertilizers

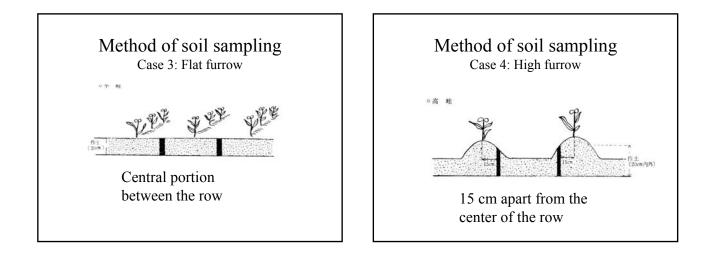
- Urea (NH₂)₂CO
- Ammonium nitrate NH₄NO₃
- Ammonium phosphate (NH₄)₂HPO₄
- Compost works the same

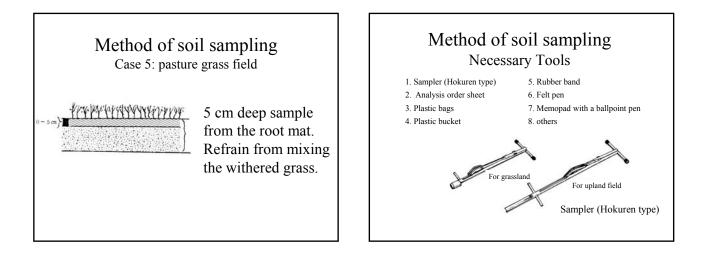

All constituents are absorbed or decomposed

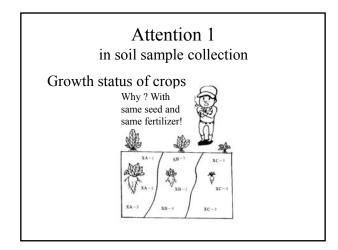
Acid rain

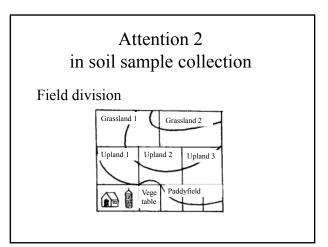

- $SO_2 + H_2O \rightarrow H_2SO_3$
- $H_2SO_3 + (1/2)O_2 \rightarrow 2H^+ + SO_4^{2-}$
- N₂O, NO, NO₂ + m H₂O + (n/2) O₂ \rightarrow H + NO₃-

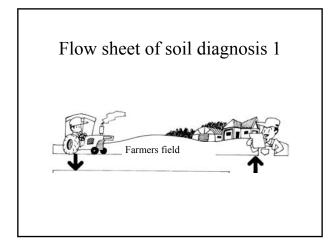


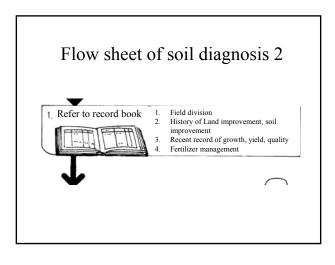

- Pyrite is accumulated stably in sediments.
- Pyrite is oxidized by air on land reclamation and sulfuric acid is formed.
- $\text{FeS}_2 + \text{nO}_2 + \text{H}_2\text{O} \rightarrow \text{FeSO}_4 + \text{H}_2\text{SO}_4$
- Paddy field on reclaimed land, dressed soil, peat land have this problem.

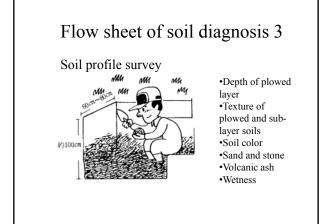


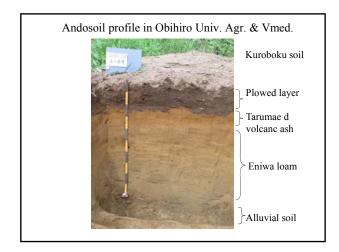


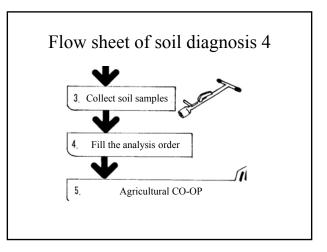


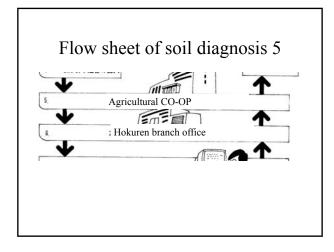


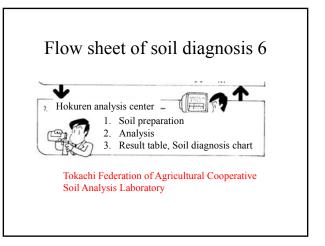


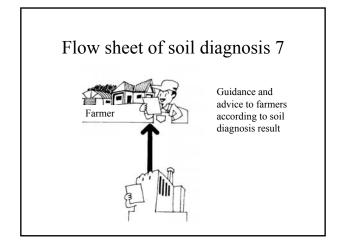



Field


Laboratory




What soil profile survey tells you:


- What factor is limiting the plant growth (gravel, volcanic ash, clay, compaction of soil material, acidity, salt accumulation)
- · Content and thickness of humus
- Drainage, water retention, dry or wet.
- Different soil layers composing the soil profile → History of soil

Sieve soil samples (2mm)

Various Analysis Items and their significance

$pH(H_2O)$

- Concentration of free form H⁺ in soil solution
- $pH = log (H^+)$
- Add 25 ml of water to 10g of soil.
- Shake 30 minutes.
- Measure the pH of turbid suspension using pH meter.

Factors affecting soil pH(H₂O)

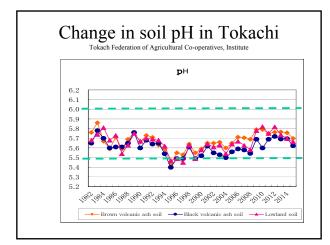
- Fertilizer application
- Nutrient absorption by crops
- Seasonal change in climate, precipitation
- Partial pressure of CO2
- Activity of soil microbes
- Decomposition of soil organic matter
- Saturation degree of soil bases
- Leaching of soil bases
- Nitrification (NH_4^+, NO_3^-)

pH meter & EC meter

pH(KCl)

- Reflect the concentration of H⁺ and Al³⁺ adsorbed electrostatically to clay and humus.
- pH(KCl) decreases when degree of saturation by basic cations is low.
- Add 25 ml of 1 M KCl to 10g of soil.
- Shake 30 minutes.
- Measure the pH of turbid suspension using pH meter.

Meaning of soil pH(KCl)


- Highly correlated with Al saturation degree of soil.
- pH(KCl) lower than 5.2 means
 - \rightarrow occurrence of exchangeable Al³⁺
 - \rightarrow Inhibition of plant growth by Al³⁺
- $Al^{3+} + H_2O \rightarrow Al(OH)^{2+} + H^+$
- $Al(OH)^{2+} + H_2O \rightarrow Al(OH)_2^+ + H^+$

pH(0.01M CaCl₂)

- Masking the effect of seasonal change and farm management
- To reflect the actual root zone environment more accurately, soil pH under dilute electrolyte concentration is more appropriate.

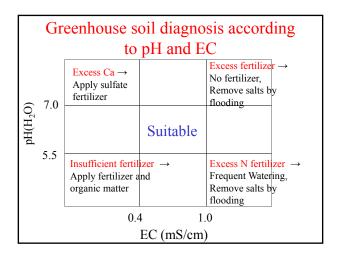
Meaning of soil pH

< 5.0	Very acidic
5.0 - 5.5	Acidic
5.5 - 6.0	Weakly acidic
6.0 - 6.5	Slightly acidic
6.5 - 7.0	Neutral
7.0 - 7.5	Slightly alkaline
7.5 - 8.0	Weakly alkaline
8.0 - 8.5	Alkaline
8.5 <	Very alkaline

Effect of pH on plant growth

- H^+ ion inhibits the function of root (pH < 4)
- Increase in Al³⁺ ion (Inhibit growth at >1 ppm level)
- Inhibit absorption of N, P, K, Ca, Mg, B, Mo and symptom of deficiency (in acidic range)
- Excess in Cu, Zn, Mn, Fe (in acidic range)
- Deficiency in Cu, Zn, Mn, Fe (in alkaline range)

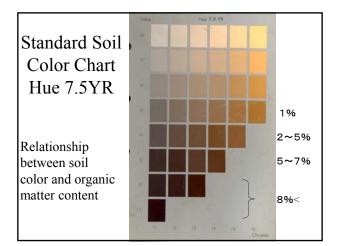
Exchangeable Acidity


- Weigh 10 g of air dried soil in to a flask or bottle.
- Add 25 mL of 1N KCl.
- Shake for 1 hour.
- Filter through a filter paper (Advantec No.6).
- Take 10 mL of the filtrate into a flask and titrate with 0.1 N NaOH.
- Consumed mL is multiplied by 12.5.
- Obtained value is Y₁.

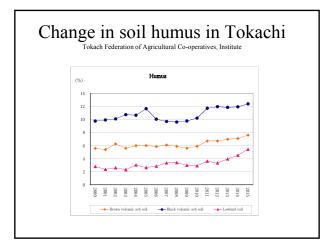
Electric conductivity (EC)

- Reflect total concentration of water soluble ions in soil solution
- Add 50 ml of deionized water to 10g of soil, shake 30 min. Measure EC of turbid suspension using EC meter.
- Unit is S/m, mS/cm or µS/cm, S: Siemens (1S/m=10 mS/cm = 10⁴ µS/cm)

Meaning of soil EC


- High correlation with nitrate NO_3^- content
- Malnutrition under low EC(< 0.1 mS cm⁻¹)
- Growth damage at high EC (> 1 mS cm⁻¹)
- Adjust fertilizer application rate according to EC

Application rate of basal fertilizer (N, K) according to soil EC(dS m ⁻¹) in upland field					
Soil Type	< 0.3	0.4-0.7	0.8-1.2	1.3-1.5	1.6 <
Humic andosoil	Standard rate	2/3	1/2	1/3	No fertilizer
Sandy• Fine textured	Standard rate	2/3	1/3	No fertilizer	No fertilizer
Sand dune/ immature	Standard rate	1/2	1/4	No fertilizer	No fertilizer


Humus	
Humus = Soil organic matter	
ethod of determination	
Rapid estimation by soil color	
Tyurin method (Potassium dichromate oxidation/ Titration)	
Dry combustion method (Instrumental analysis)	

Μ

Importance of humus

- Soils with high humus content are generally fertile and easily manageable.
- Exception \rightarrow Andosoil (Kuroboku in Japan)
- Supply nutrients (especially N)
- Hold soil moisture
- Hold nutrients (Cation Exchange Capacity)
- Formation of Soil Aggregate Structure

Nitrogen Analysis

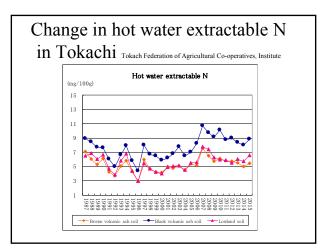
• Nitrogen is the most important constituent of fertilizer.

Inorganic nitrogen

- Ammonium nitrogen Extracted by 1N KCl, 2N KCl
- Nitrate nitrogen Extracted by Water, 1N KCl, 2N KCl
- Determine by steam distillation/ titration or colorimetry
- Rapidly available to crops

Available nitrogen

- Potential amount of inorganic nitrogen formation
- After incubating 4 weeks at 30 °C, total amount of formed inorganic nitrogen is determined.
- Incubation under upland or paddy condition.
- Problem: Time consuming method

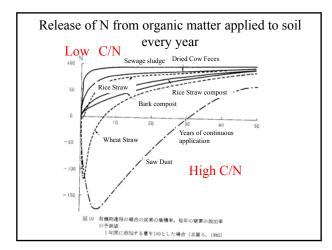

Phosphate buffer (pH7) extraction method (Rapid estimation method for available nitrogen)

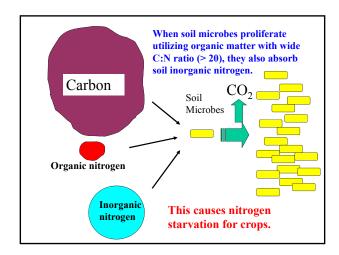
• Extracted nitrogen content or absorbance at 420 nm of the extracted solution showed high correlation with available nitrogen estimated by incubation method.

Hot water extractable nitrogen

- Another measure of available nitrogen
- Soil + water (1:10)
- Autoclaved (105 °C/modified to 121 °C, 1 hour)
- Filtered
- Extracted solution is digested by Kjeldahl method
- Nitrogen is determined by colorimetry

5 11	Adjustment of N application rate according to ho water extractable nitrogen				
Hot water N (mg / 100 g)	N application rate (kg / 10 a)				
1, 2	24				
3, 4	20				
5, 6	16				
7, 8	12				
9, 10	8				
Higher than 11	8				




Total Nitrogen

- Kjeldahl digestion (conc $H_2SO_4 + K_2SO_4 + Catalyst(Cu, Hg, Se)$) Organic N $\rightarrow NH_4^+$
- Instrumental (Dry combustion method)
- C/N is calculated
- C/N is related to the pattern and rate of nitrogen mineralization

Kjeldahl digestion apparatus

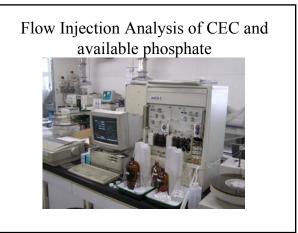
Expected N release (kg) from 1t of organic matter (dry matter) during the following 1 year

Type of Organic Matter	Released N (kg)
Sewage sludge	70 (maximum)
Dried cow feces	31
Mature compost	19.9
Intermediately mature compost	19.5
Bark compost	19.5
Rice straw	6.5
Rice husk	5.4
Wheat straw (after long term application)	3.3
Saw dust (after long term application)	2.1

Adjustment of Fertilizer Application Rate according to Organic Matter Amendment (/ 1 t)

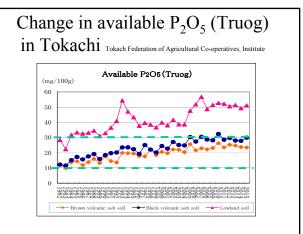
Organic Matter	N (kg)	P_2O_5 (kg)	K ₂ O (kg)
Crop residue compost	1	1	4
Bark compost	0	2	2
Cow feces + straw compost	2	4	7
Cow feces + bark	2	3	5
Chicken manure + bark	3	12	9
Municipal refuse compost	3	3	4
Food company garbage compost	10	7	3
Sewage sludge compost	13	15	1

Available Phosphate


- Limited resources of phosphate.
- Deficiency is common in most of soils.

Available phosphate

- Soil phosphate which is readily absorbed by plants.
- Various extraction methods has been proposed and correlation between crop growth has been examined.
- Suitable method differs depending on soil types and crops.


Various methods for Available phosphate

- Truog method (for neutral acidic soils)
- Bray Method (No.1, No.2, No.2 modified) (for neutral – highly acidic soils)
- Olsen method
- (for high $pH CaCO_3$ affected soils)
- 2.5% acetic acid extraction method (for Ca type phosphate)
- Mehlich 3 method
 - (for soil with pH 5.2 8.2)

Truog method

- + 0.001 M H_2SO_4 (with 0.3% ammonim sulphate)
- Soil: Extractant 1:200
- Shake 30 min
- Colorimetry (Molybdenum blue method)
- · Calcium form phosphate
- Applied to upland field, vegetable field, orchard field, paddy nursery soil in Japan

Bray No2 modified method

- 0.03M NH₄F + 0.1M HCl
- Soil:Extractant 1:20 (grassland soil) 1:10 (paddy soil)
- Shaking time 1 minute
- Ca form phosphate, and partially Al form + Fe form phosphate are extracted.
- Applied to Paddy soil and Grassland soil in Japan

Olsen method

- To 5g of soil, 0.5 M NaHCO₃ 100ml and 1 g of Active Charcoal were added.
- Shake 30 minutes
- Applied to soils with alkaline pH

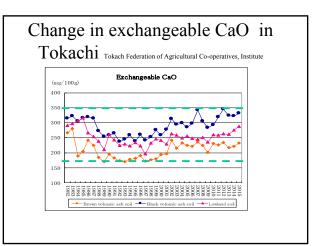
Mehlich 3 method

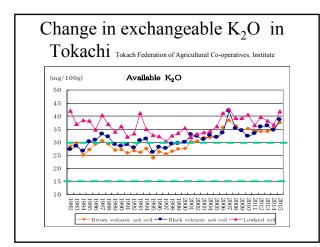
- 1 g of soil is extracted with 10 mL of extractant solution (0.2M CH₃COOH, 0.25M NH₄NO₃, 0.015M NH₄F, 0.013M HNO₃, and 0.001M EDTA) by shaking during 5 min. Extacts are filtered through Whatman 42 paper. P determined by colorimetry (Molybdenum blue method).
- Mehlich 3 test often measures more P than Bray 1-P on high pH, CaCO₃ affected soils.

2.5% acetic acid extraction

- 1 g of soil is extracted with 100 mL of 2.5% acetic acid once, then with 50 mL of ammonium chloride two times.
- Calcium form phosphate is extracted
- Applied to wheat field soil
- Developed in Japan, but not yet so popular.

	able Phosphate (T rate of P-fertilizer	-
Available $P_2O_5 mg/100g$	Diagnosis	application rate of P-fertilizer
0 - 5	Insufficient	150 %
5 - 10	Slightly insufficient	130 %
10 - 30	Suitable	Standard rate
30 - 60	Slightly high≁ High	80%
> 60	Excess	50%


Available Phosphate (Truog) and application rate of P-fertilizer to vegetable field					
Available P ₂ O ₅ mg/100g	Diagnosis	application rate of P-fertilizer			
<10	Insufficient	120 %			
10 - 20	Slightly insufficient	Standard rate			
20 - 50	Suitable	Standard rate			
50 - 100	Slightly high~High	50 - 80%			
> 100	Excess	No application			
•					


Exchangeable bases and cation exchange capacity

Exchangeable bases (Ca, Mg, K)

- Exchangeable bases are extracted with 1M ammonium acetate and determined.
- Atomic absorption spectrophotometer and flame photometer are used for determination.
- Exchangeable cations are readily available to crops.

Contents of exchangeable K ₂ O and adjustment of K fertilizer to upland crops				
Exch. K ₂ O mg/100g	Diagnosis	K fertilizer application Values in () are for potato		
0 - 8	Insufficient	150 % (130 %)		
8 - 15	Slightly insufficient	130 % (110 %)		
15 - 30	Suitable	Standard rate		
30 - 50	Slightly high	60% (50%)		
50 - 70	High	30% (20%)		
> 70	Excess	0% (0%)		

Cation Exchange Capacity (CEC)

- Capacity of Soil to hold cations electrostatically
- Due to minus charge on clay-minerals and humus
- Soil is first saturated with NH₄⁺ by pH7 1M ammonium acetate, then eluted with 1 M KCl.
- Eluted NH_4^+ is determined.

Standard Value for CEC

- Fundamental data for soil improvement and fertilizer management.
- + Sand-dune immature soil $3-10 \text{ cmol}_c/\text{kg}$
- Gray lowland soil Light colored andosoil 15-25 cmol_c/kg
- Humic andosoil 20-30 cmol_c/kg

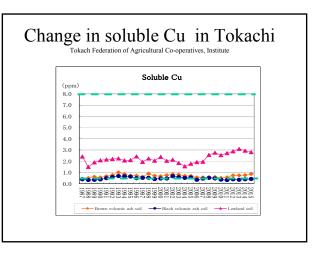
To increase CEC

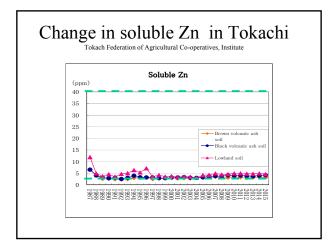
- Soil dressing using clayey soil
- Organic matter amendment for many years
- Increasing CEC will be a hard work for farmers

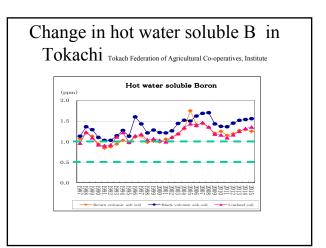
Macro elements

- C, H, **N**, O
- P, K, Ca, Mg, S

are applied by fertilizers.


Trace Elements


- Fe, Cl, B, Mn, Cu, Zn, and Mo are essential trace elements for plants
- Cu and Zn are extracted with 0.1N HCl (1:5)
- Boron is extracted with hot water.


Atomic Absorption Spectrometer

elements			
Items	Standard Value	Remarks	
Soluble Cu (Cu) in 0.1N HCl	0.5 ~ 8.0 ppm	Wheat(def.) Azuki(excess)	
Soluble Zn (Zn) in 0.1N HCl	2 ~ 40ppm	Corn•wheat (deficiency)	
Hot water soluble B (B)	0.5~1.0ppm	Beet (deficiency)	

Soil types and disorder in trace elements	
Deficiency	Type of soils
Cu	High pH soil, humic andosoil
Zn	Sandy soil, High pH soil, peaty paddy soil
В	Sandy soil, High pH soil, peaty soil

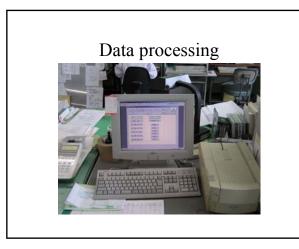
Phosphate absorption coefficient

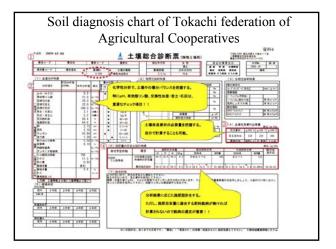
- Indicator for phophate absorption by soil
- Add 50ml of ammonium phosphate (pH 7.0, 13.44g P₂O₅ /l) to 25 g of dried soil. Shake 24 hours, filtered, and phosphate concentration in the filtrate is determined.
- Absorbed amount of phosphate is calculated from the difference between blank and sample.
- Expressed by absorbed amount (mg) of P_2O_5 by 100 g of soil.

Significance of phosphate absorption coefficient

- Indicator for identifying Kuroboku soil.
 (>1500 mg P₂O₅/100g)
- Estimate the rate of phosphate application.
- Instead of chemical determination, nearinfrared analysis is also used.

Near-infrared analyser


Other useful elements


- Na for sugar beet
- Si for rice
- Al for tea

Are useful for limited types of plants.

Other items for soil diagnosis

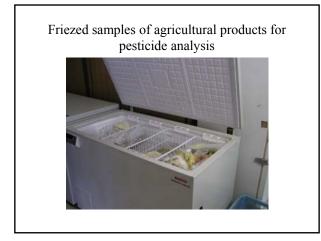
- Particle size analysis
- Penetrometer
- Enzyme activity (α-Glucosidase)
- Nematodes

Application of soil diagnosis is beneficial for


Proper fertilization
 Save fertilizer cost
 Secure healthy growth and high yield
 Prevent environmental pollution by
 excess fertilizer.
 Maintain soil fertility
 Prevent soil deterioration

Use of Soil Diagnosis in Tokachi District

- 24.1 % of farmers are practicing soil diagnosis annually.
- 47.1 % occasionally.
- 23.1 % have some experience.
- 5.7 % have no experience of soil diagnosis.
- Results of soil diagnosis are used to calculate the application rates of fertilizers and soil improving materials.


Laboratory and facililties

Residual pesticide analysis

