Soil Organic Matter Its Characteristics and Roles in Agricultural Environments Part 1

Kiyoshi Tsutsuki
Obihiro University of Agriculture and Veterinary
Medicine

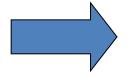
Wise-being in the forest told

Homo ab Humo

- Human was born from a rich soil containing large amount of
- Human Humus Humidity

There is a profound connection between human, humus, and humidity.

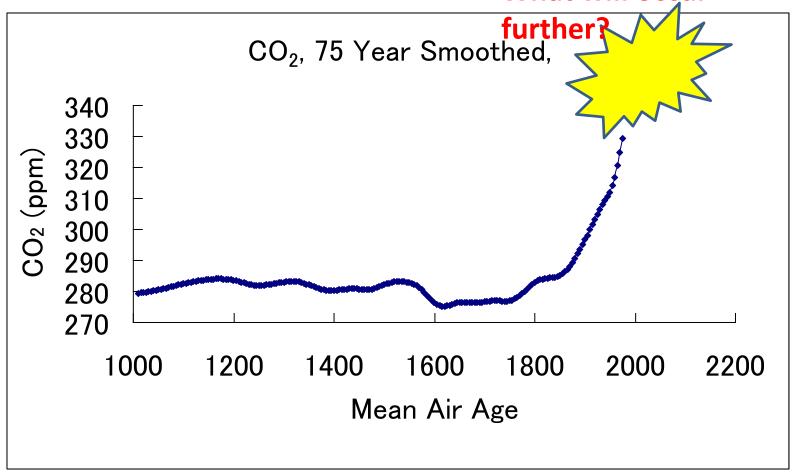
Sleeping mind of human "Terra as the mother"


Do you feel soil dirty?

Take a clod of soil into your hand, watch and smell it.

We will be relieved by such soils:

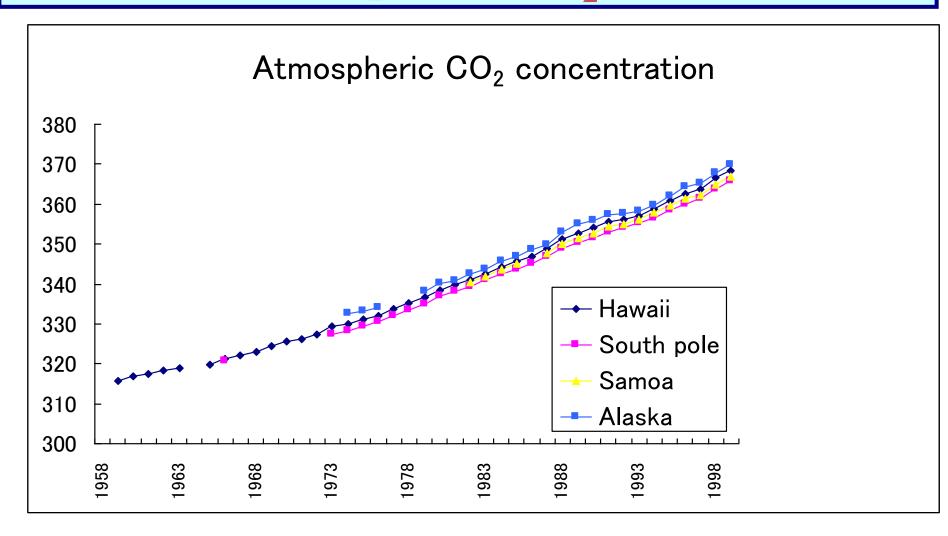
- Black soil
- Soft soil
- Good smelling soil
- Soil in which small worms are living


Such soils contain a suitable amount of organic matter.

Soil breeds life.

Evidence for this fact is

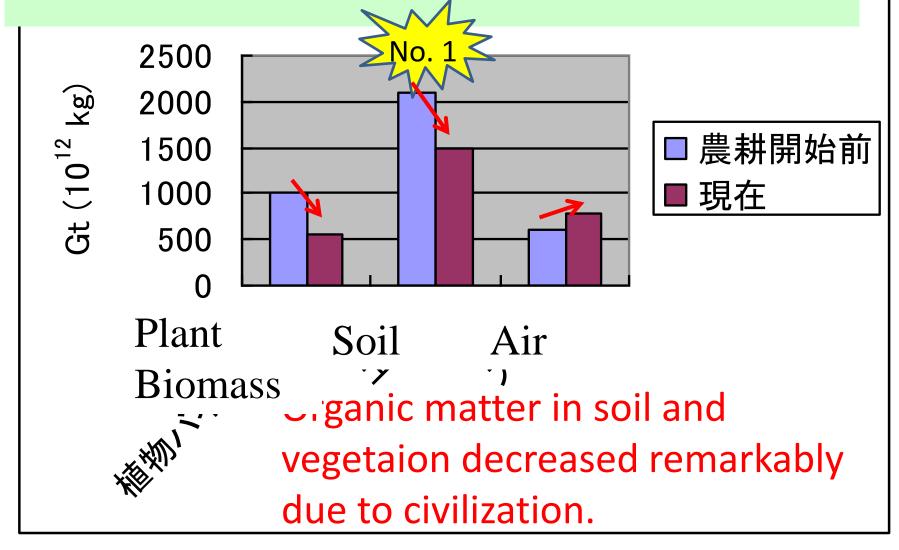
Soil Organic Matter.


What will occur

Change in ambient CO₂

(Ice-core data of antarctics)

Increase in atmospheric CO₂ concentration



Stocks of carbon on the surface of earth

Stock pools		Stored amount
		10 ¹² kg
Earth		
Plant biomas	550	
Soil humus		1500
Atmosphere	1850 (CO ₂ 260 ppm)	560
	1890 (CO ₂ 290 ppm)	630
	2000 (CO ₂ 390 ppm)	820
Ocean		38000
Carbonate sa	alts	20x10 ⁶
Dissolved organic matter		600
Solid suspension and sediments		3000
Earth crust(fossil fuel)		4000
Total amount		44800

Hunt(1972), Paul and Clark(1989), Eswaran et al.(1993) CO₂ concentration was calculated from ice-core data in Law Dome Antarctics.

Distribution of carbon on the earth

Humic substance is

- The most abundant organic matter on the earth surface. As carbon amount
 1500 Gt (10⁹ t, 10¹² kg)
- 3 times more abundant than plant biomass
- 2 times more abundant than CO₂
 - 2100 Gt of humus carbon in pre-historic age.

Biomass production and respiration/combustion on the earth (109 t/year)

	Biomass production	CO ₂ formation
Plant	500	34.5
Animal	0.5	4.1
Human	0.1	0.7
Microbes	1.0	112
Wild fire		6.9
Volcano		0.15
Factory		15
Total	502	173.5

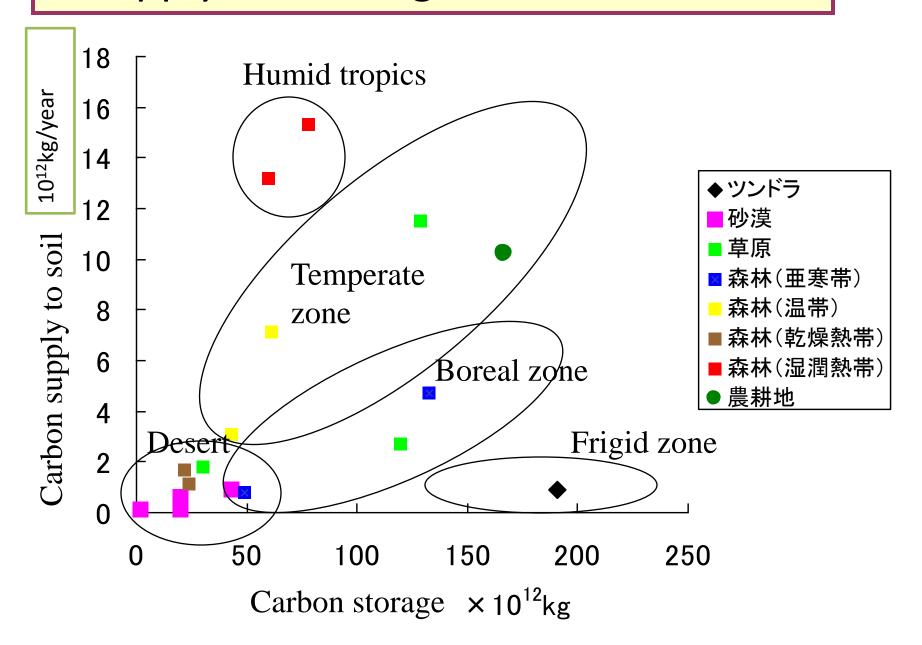
Emission of CO₂ due to human activity

Factors	Increase rare of CO ₂ carbon
	Gt (10 ⁹ t)/year
Fossil fuel combustion	7
Land use change	2.2

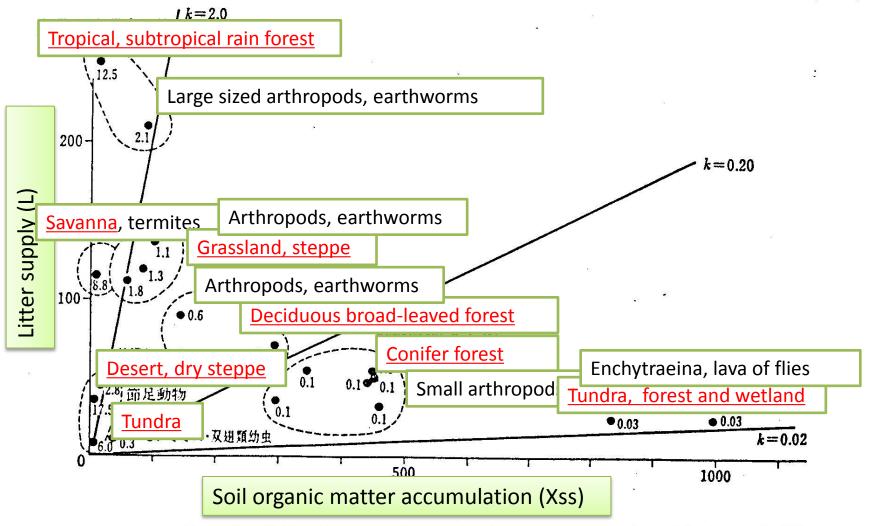
Land-use change

Forest clearing
Slush and burn
Grassland to upland field

Large amount of gas is emitted from soil surface


World energy consumption (2003)

Source	Consumption (pequivalent 10	1		
Petroleum	36. 4			
Natural gas	23. 3	85. 5	©O ₂ emission heat emission	
Coal	25. 8			
Atomic	6. 0	10.0		
Hydraulic	6. 0	12. 0		

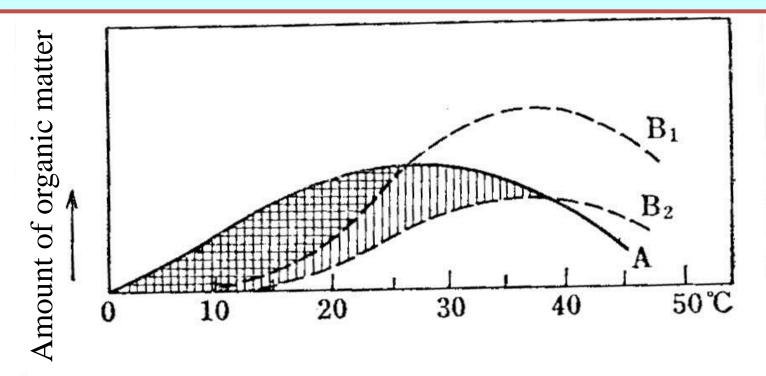

Energy consumption per capita

- World 1.7 ton annually (petroleum equivalent)
- Japan 4.1 ton annually
- USA 8.0 ton annually
- Human activity causes the increase in atmospheric CO₂ concentration.
- Plant and soil absorb CO₂.

Supply and storage of carbon in soil

Litter supply and SOM accumulation

主要な生態系型の落葉供給量, (L), 土壌有機物の蓄積 (X,,), 分解率 k=L/X, および 主要な分解動物群 図中の数字はそれぞれの地点での k の値を示す。


Primary forest in Baybay, Leyte

Primary forest soil profile in Baybay, Leyte

Factors affecting SOM accumulation: temperature and moisture content of soil

- Aerobic upland soil
- Anaerobic flooded soil
 - A Organic matter production by plant
 - B₁ Organic matter decomposition in aerobic soil
 - B₂ Organic matter decomposition in anaerobic soil

Amounts and Turnover Rates of C and N in the Microbial Biomass for Cultivated Soils for Three Locations

				Nitrogen Flux	
				through	Microbial
				Microbial	Turnover
Soil and Location	Microbial C	Microbial N	C Inputs	Biomass	Time
	kg/ha	kg/ha	Mg/ha/y	kg/ha/yr	yr
Temperate					
England	570	95	1.2	34	2.5
Canada	1600	300	1.6	53	6.8
Tropical					
Brazil	460	84	13	350	0.24