Results of soil analysis

2014.1.29

summarized by K. Tsutsuki (Lecturer)

Analysis using pH meter, EC meter, and NO3 electrodes

_			I	oH meter		EC meter	NO3 electrode	Test paper	Test paper	Test paper
Layer	Upper (cm)	Lower (cm) Av	verage depth (cm)	pH(H ₂ O)	pH(KCI)	EC (μS/cm)	NO ₃ (ppm) 1:5 extraction	$P_2O_5kg/10a$ (Bray extraction)	$P_2O_5kg/10a$ (H_2O extraction)	$K_2O kg/10a (H_2O extraction)$
Ap ₁	0	10	5	5.24	4.83	281	99	100	10	25
Ap ₂	10	25	17.5	5.33	4.99	176	52	100	10	25
2BC	25	30	27.5	5.54	5.36	142	39	100	10	25
3C ₁	30	45	37.5	5.89	5.36	135	23	100	10	25
3C ₂	45	73	59	6.27	5.36	115	12	100	10	10
3C ₃	73	98	85.5	6.16	5.11	92	11	100	10	10

pH (KCl) was measured separately by the lecturer

Analysis using "Midori-kun" rapid soil diagnosis kit (Test paper method) 1:5 water extraction.

 Layer	Upper (cm)	Lower (cm)	Average depth (cm)	pH(H ₂ O)	$\rm NO_3$ kg/ 10a	P_2O_5 kg/ 10a	K₂O kg∕10a
 Ap ₁	0	10	5	5.5	10	10	25
Ap ₂	10	25	17.5	5	5	10	25
2BC	25	30	27.5	5	5	10	25
3C ₁	30	45	37.5	5.5	0	10	10
3C ₂	45	73	59	5.5	0	10	10
 3C₃	73	98	85.5	5	0	10	10

Molybden blue method (Colorimetry)
mg $P_2O_5/100g$ soil

Measured separately by

50.0	
41.4	
0.5	
0.3	
0.8	
3.0	

Results obtained by the rapid test paper method were reasonable compared with those obtained by scientific instruments.

Water soluble phosphate was very low compared with the Bray 2 results.

Soil pH was lower in the upper plowed layer.

Acidification due to fertilizer application is suspected.

Absorption and leaching of basic elements also cause the lowering of pH.

EC and NO₃ concentrations decreased with soil depth. It reflects the concentration of fertilizers in soil. Highly positive correlation was also found between NO₃ and EC.

Nitrate concentration in vegetables

25 g of leaf and stem of vegetables were homogenized using a juicer mixer with 475 mL of deionized water.

NO₃ concentration was measured by NO₃ meter (HORIBA LAQUA Twin B-742 calibrated with 30 and 300 ppm standards).

Brassica campestris from Gunma prefecture

62 ppm	× 20 =	1240 ppm
80 ppm	× 20 =	1600 ppm

Spinach from Saitama prefecture

260 ppm	x 20 =	5200 ppm
280 ppm	x 20 =	5600 ppm

Very high nitrate concentration in spinach.